
SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Test Flakiness Across Programming Languages
Keila Barbosa, Ronivaldo Ferreira, Gustavo Pinto, Marcelo d’Amorim, and Breno Miranda

Abstract—Regression Testing (RT) is a quality-assurance practice commonly adopted in the software industry to check if functionality
remains intact after code changes. Test flakiness is a serious problem for RT. A test is said to be flaky when it non-deterministically
passes or fails on a fixed environment. Prior work studied test flakiness primarily on Java programs. It is unclear, however, how
problematic is test flakiness for software written in other programming languages. This paper reports on a study focusing on three
central aspects of test flakiness: concentration, similarity, and cost. Considering concentration, our results show that, for any given
programming language that we studied (C, Go, Java, JS, and Python), most issues could be explained by a small fraction of root
causes (5/13 root causes cover 78.07% of the issues) and could be fixed by a relatively small fraction of fix strategies (10/23 fix
strategies cover 85.20% of the issues). Considering similarity, although there were commonalities in root causes and fixes across
languages (e.g., concurrency and async wait are common causes of flakiness in most languages), we also found important differences
(e.g., flakiness due to improper release of resources are more common in C), suggesting that there is opportunity to fine tuning
analysis tools. Considering cost, we found that issues related to flaky tests are resolved either very early once they are posted (<10
days), suggesting relevance, or very late (>100 days), suggesting irrelevance.

Index Terms—Regression Testing, Test Flakiness, Programming Languages

F

1 INTRODUCTION

R EGRESSION testing is a very important and common
practice in software development today. It is used to

check if a functionality implemented in the software remains
intact during software evolution. One serious problem that
hinders the effectiveness of regression testing is the pres-
ence of flaky tests. A test is said to be flaky when it non-
deterministically passes or fails on the same configuration of
the running environment (e.g., code, OS, etc.) [1]. For exam-
ple, a test could non-deterministically fail because it tries to
access a local server –that the test itself spawned– before the
server is ready to accept requests. Flaky tests can negatively
impact the software development process in two important
ways: (1) Increased Cost. In the presence of flaky tests,
developers cannot decide whether a failure is an indication
of a real problem or a false alarm. Developers have to debug
the problem, which is time-consuming; (2) Distrust. Flaky
tests can negatively impact the confidence of organizations
in Software Testing; developers may start ignoring the test
results, weakening the testing culture [2].

Test flakiness is a serious problem in industry. Many test
failures at Google are due to flaky tests [1], [3]. At Microsoft,
the presence of flaky tests imposes an important burden
on developers. For example, Lam et al. [2] reported that
58 Microsoft developers involved in a survey considered
flaky tests to be the second most important reason, out
of 10 reasons, for slowing down software deployments.
Furthermore, Herzig et al. [4] reported that, at Microsoft, the
cost of inspecting test failures due to flakiness is estimated
in $7.2 million only considering one product, Microsoft
Dynamics. On GitHub, it was reported that “1 in 11 commits

• Keila Costa, Marcelo d’Amorim, and Breno Miranda are with the Federal
University of Pernambuco, Brazil.
E-mails: {kbcs2,damorim,bafm}@cin.ufpe.br

• Ronivaldo Ferreira and Gustavo Pinto are with the Federal University of
Pará, Brazil
E-mails: ronivaldo.junior@icen.ufpa.br and gpinto@ufpa.br

had at least one red build caused by a flaky test” [5]. Other
organizations share similar problems [6], [7].

Three main strategies exist to deal with flaky tests:
(i) prevent, (ii) detect (before running), and (iii) rerun
(after failure). Prevention consists of regulating software
development to avoid flakiness. For example, at Google,
developers are encouraged to write single-threaded tests to
avoid flakiness [8]. Prevention can be challenging, especially
when developers need to write tests other than unit tests.
Detection consists of analyzing the test cases before they are
executed in regression testing. This strategy has been under
active investigation in research. However, existing detection
techniques are limited. Static detectors are imprecise [9]–[12]
and dynamic detectors are limited in scope [13]–[16]. Finally,
Rerun consists of re-executing for multiple times test cases
that have failed during regression testing. A test that failed
and then passed —on a fixed version of the application
code— is considered flaky, and vice-versa. The status of
a test that persistently failed is unknown, but developers
typically treat this scenario as a problem in application code
as opposed to a bug in test code. Although Rerun is popular
in industry [1], [17], it is expensive and counter-productive.
Rerunning failing tests consumes a lot of computing power.
Google, for example, uses 2-16% of its testing budget just to
rerun flaky tests [1], [18]. Rerun is also counter-productive.
When developers observe flaky tests during regression test-
ing, they can choose to interrupt their activities to imme-
diately address test flakiness or to provisionally ignore the
test, postponing its repair. The decision to interrupt the cur-
rent task is disruptive whereas the decision to ignore flaky
tests, albeit common, is ineffective [19].1 That practice can
result in observations of even more failures during software
evolution, as highlighted by Rahman and Rigby [20]. That
practice can also reduce the ability of the test suites to detect

1. For reference, the JUnit annotation @Ignore tells JUnit to ignore
the corresponding test.

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

bugs as it is unclear when developers would eventually
revise the ignored test case to eradicate its non-determinism.

This paper uses the term root cause (or source) to indicate
the reason of flakiness and the term fix strategy (or repair) to
refer to the mechanism used by developers to eliminate test
flakiness. A root cause can have different fix strategies, and
a fix strategy can be used to address different causes. For
illustration, Table 1 shows a list of sources of test flakiness,
as categorized by Luo et al. [21], whereas Table 3 shows a
list of pairs of root causes and fix strategies, as identified
by Luo et al. [21] and by Eck et al. [22].

The vast majority of prior work on test flakiness focused
on Java (see Section 8). Little is known about how test flaki-
ness manifests in other programming languages. Intuitively,
the programming abstractions offered by a PL can influence
the prevalence of certain problems and how they are treated.
For example, prior work observed that concurrency often
induce test flakiness in Java projects (see categories ”Async
Wait” and ”Concurrency” on Table 1). This observation
raises the question: Does concurrency also induce flakiness in
projects written in languages other than Java? Are concerns other
than concurrency associated with flakiness in projects written in
other languages? The goal of this paper is to understand
the root causes and their fixes in popular programming
languages. This problem is important for developers writing
code in a given language and for developers of (flakiness)
analysis tools. For example, machine learning models pro-
posed in the literature to statically classify flaky tests [9]–
[12], [23] could be improved based on the understanding
that code written in certain PLs are more prone to certain
sources of flakiness. Likewise, code repair tools could pro-
vide recommendations more likely to be accepted if it is
known that certain fixes are more common to address a
given root cause in projects written in a given PL.

This paper reports on a large-scale study about flaky
tests in projects written in five PLs: C, Go, Java, JavaScript,
and Python. The choice of language was primarily based on
popularity [24]. Section 3 elaborates on our selection criteria.
We mined issues from GitHub using keywords related to
test flakiness and inspected those issues to categorize root
cause and fix strategy. We stopped the inspection when, for
a given language, we confidently categorized the root cause
and fix strategy of a total of 100 issues. Each issue was ana-
lyzed by two researchers who read the discussion thread,
the original code, and the modified code. We used the
taxonomies presented by Luo et al. [21] and by Eck et al. [22]
to determine the root causes and corresponding strategies to
fix flaky tests(see Section 2). Based on the collected data, we
posed the following research questions:

RQ1 [Concentration]. Is it the case that, for a given PL,
a small fraction of sources and corresponding fix strategies are
associated with the majority of the issues? This question helps
understanding whether it is possible for developers (and
tools) to focus on a small set of root causes and fix strategies
when analyzing flaky tests. Our results indicate that the
answer to this question is affirmative. For example, we
found that (1) 5 of the 13 root causes cover 78.07% of the
issues and (2) 10 of the 23 fix strategies cover 85.20% of
the issues. Curiously, we also found that these proportions
are not uniform across languages. For example, the con-

centration of root causes and fixes in Go was much higher
compared to other languages. Three root causes –async wait,
concurrency, and network– explain 68.89% of the issues we
analyzed on that language.

RQ2 [Similarity]. How (dis)similar are the root causes and
fix strategies across PLs? The answer to the first question
indicates that there is opportunity to improve the analysis
of flakiness by focusing on a small portion of root causes
and fix strategies. However, it does not explain if the same
root causes (and fixes) affect all PLs. Understanding this is
important to determine whether specializing analysis tools
to specific languages would be helpful. Results to this RQ
indicate that there are commonalities and differences (of
causes and fix strategies) across languages. For example,
considering commonalities, we found that async wait and
concurrency are very prevalent in most languages (not
only Java). Considering differences, we found that in C, in
contrast to other languages analyzed, async wait is not very
common whereas improper release of resources are very
common (see Table 6).

RQ3 [Cost]. How costly is it to resolve flaky tests? Flaky
tests are common, but it is unclear how costly is it to eradi-
cate them once they are detected. This question addresses
this concern by analyzing (1) the time from opening to
closing an issue and (2) the number of messages in the dis-
cussion thread of an issue. Results indicate that most issues
are resolved either very early (less than 10 days) or very late
(over 100 days) and some of them involve more discussion
than average for a given language. Overall, results suggest
that, although some issues seem to demand less effort to
be addressed (e.g., platform dependency issues) and some
issues seem to be less relevant (given their long inactive
time), many of the issues involved a lot of discussion and
quick engagement.

This paper reports on a study to understand test flak-
iness across programming languages. The study focused
on three dimensions: concentration of root causes and
their fixes (RQ1), similarity of root causes and their fixes
(RQ2), and cost of resolving issues (RQ3). This study has
the potential impact of improving analysis tools and software
engineering practices under the assumption that test flakiness
is a pressing problem to the community (see Section 6). The
artifacts produced during the study are publicly avail-
able: https://github.com/Test-Flaky/TSE22.

2 THE ANATOMY OF FLAKY TESTS

This section presents a list of root causes of test flakiness
(Section 2.1) and a list of strategies used by developers
to eradicate them (Section 2.2). [21] originally proposed
a taxonomy for causes and fixes and [22] later extended
them. This section covers the cases that we observed in our
experiments. It is worth noting that (1) all issues that we
analyzed could be categorized according to one of the root
causes and fix strategies proposed in the studies above, i.e.,
we did not find new root causes and fixes; and that (2) some
root causes and fix strategies listed by Eck et al. [22] have
not been confirmed.

https://github.com/Test-Flaky/TSE22

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

Table 1: Causes of test flakiness reported by Luo et al. [21].

Name % Description

ASYNC WAIT
(AW)

36.4 When the test execution makes an asynchronous call
and does not properly wait for the result of the call
before using it.

CONCURRENCY
(C)

15.8 When the non-determinism observed in the test
output is due to different threads interacting in a
non-desirable manner (but not due to asynchronous
calls from the Async Wait category), e.g., due to data
races, atomicity violations, or deadlocks.

TEST ORDER
DEPENDENCY

(TOD)

9.4 When the test outcome depends on the order in
which the tests are run. For example, a test x
depends on test y if x reads from a global variable
changed by y. Test y passes or fails depending on
whether x is executed before y.

RESOURCE
LEAK (RL)

5.4 When the application does not properly manage
(acquire or release) one or more of its resources, e.g.,
memory allocations or database connections, leading
to intermittent test failures.

NETWORK (N) 4.8 When the test depends on a network resource,
which is hard to control, causing flakiness.

RANDOMNESS
(R)

2.5 When the test code or application code depends on
random number generators without accounting for
all the possible values that may be generated. For
example, a test may fail only when a one-byte
random number that is generated is exactly 0.

TIME (T) 2.0 When the test depends on the system time, e.g., a
test may fail when the midnight changes in the UTC
time zone.

FLOATING
POINT

OPERATIONS
(FPO)

1.5 When the test performs complex floating point
operations, which can produce distinct results
(modulo error bounds).

UNORDERED
COLLECTION

(UC)

0.5 When iterating over unordered collections (e.g.,
sets), the code should not assume that the elements
are returned in a particular order. If it does, the test
outcome can become non-deterministic as different
executions may have different orderings.

2.1 Root Causes of Test Flakiness

Table 1 shows a summary of the sources of flakiness (i.e.,
root causes) found by Luo [21] in a study involving popular
Apache projects written in Java. Column ”Name” shows the
name used to refer to the cause of flakiness, column ”%”
indicates the relative frequency of that cause, and column
”Description” summarizes the problem. The sources are
listed from top to bottom in decreasing order of prevalence
(column %). It is important to highlight that (1) according
to Luo et al., the top two causes –Async Wait and Con-
currency– are responsible for ∼50% of the cases of flakiness
and both causes are related to the concurrent behavior of the
software and that (2) the sum under column % does not add
to 100 because the categories ”IO” and ”Hard to Classify”
were left out. We did not observe flakiness due to ”IO” in
our experiments.

Table 2 shows the sources of flakiness reported by
Eck et al. [22] but not by Luo et al. [21] for which we
found occurrences in our experiments. The source Platform
Dependency (PD) is worth discussing in more detail. In our
experiments, we found a total of 14.72% PD-related issues, a
high value both in absolute and relative terms (see Table 3).
Whether PD should be considered a valid source of flakiness
is admittedly a matter of debate. One could interpret that,
according to the definition of flakiness we used [1], PD is
not a valid source because test failures are not intermittent
once the developer fixes the execution environment, i.e., the
test either deterministically passes (on a given platform) or
it deterministically fails (on a given platform). However, one
could also interpret that the test fails or passes, depending

Table 2: Root causes reported by Eck et al. [22] but not by Luo et al. [21].

Name Description

PLATFORM
DEPENDENCY

(PD)

”Non-deterministic test failures occurring only on specific
platforms (e.g., a test only failing in debug builds or on
32-bit Windows 7 systems).”

TEST CASE
TIMEOUT

(TCT)

Test frameworks often add time budgets to test cases. This
problem occurs when execution time of a test case
increased over time with the addition of new functionality
(e.g., substitution of mocked functions with actual
functions) leading to non-deterministic test timeouts.

TOO
RESTRICTIVE

RANGE (TRR)

Some applications are inherently non-deterministic (e.g.,
games). An assertion of a test from these applications
could check whether a value falls within a range of
acceptable values. As consequence, a test could
non-deterministically fail if the range is too restrictive.

TEST SUITE
TIMEOUT

(TST)

Similar to TCT. A test suite increases over time, but
developers fail to observe that. As result, the test suite can
non-deterministically fail because of insufficient time
budget to run the test suite.

on the platform it runs. Hence, it is a flaky test. For coher-
ence with the findings of Eck et al. [22] and the bug reports
issued by developers of multiple projects, we considered PD
as a legitimate source of flakiness.

2.2 Fix Strategies of Test Flakiness

This section illustrates common fixes that developers
adopted to mitigate test flakiness. Table 3 describes the
fixes, indicating their prevalence in our study. The fixes are
grouped by the root causes, as discussed on Section 2.1. The
highlighted cells indicate the most prevalent root causes
and fixes. For example, the root causes AW, C, and PD
are the most prevalent causes. The table includes the fixes
catalogued by [21] and [22] for which we found mani-
festations in our study. Column ”Cause” shows the short
name of the root cause, as listed on Tables 1 and 2, and
shows the prevalence of the issues of that kind. Column
”Fix” indicates the strategy used to eradicate flakiness.2

Column ”Description of the Fix” shortly summarizes the
fix strategy. Column ”Ex.” shows an example issue from
a GitHub project manifesting that fix strategy and, finally,
column ”%” shows the prevalence of that strategy in our
data set. In the following, we discuss concrete examples of
the five most prevalent fixes as highlighted in column ”%”.
PD - Correct Directories (14.2%). This example briefly
describes a manifestation of flakiness on the GitHub project
hpal caused by a platform dependency issue. Developers
reported two platform-related problems: (1) when executing
the code on Windows, the code was using an incorrect name
of the command to invoke the Node.js Package Manager
(NPM): ”npm” as opposed to ”npm.cmd”, and (2) the
code was not converting path separators and end-of-line
symbols when executing in a different platform. Developers
indicated that the test had not been previously executed on
Windows. Figure 1 shows a snippet of code illustrating how
these problems were addressed in code. For the first prob-
lem, a new variable npmCmd was created to store the cor-
rect name of the command, irrespective of the platform. For
the second problem, a normalization function was created to
translate paths referred in code. We omitted the references to

2. In case [21] and [22] used different names for a given fix, we chose
to use the name that seemed to best represent that strategy.

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

Table 3: Common Fixes for Test Flakiness, grouped by Root Causes.

Cause Fix Description of the Fix Ex. %

Add/modify waitFor [21], [22] The term ”waitFor” refers to an abstract operation to make the thread wait until certain desirable
condition holds.

[25] 10.4

AW(19.4%) Add/modify sleep [21] Add or modify time delay–using a sleep command–to wait for some task to finish before
proceeding to other dependent task.

[26] 6.6

Reorder execution [21], [22] Reorganize the statements in test case such that sufficient time is given for the results of async calls
to become available before using them.

[27] 2.2

Add/modify waitFor [22] As explained above, but the ”waitFor” is added in the application code, not the test code. [28] 3.6
C Change cond. [21], [22] Modify control flow to enforce that certain threads follow specified execution paths. [29] 3.8

(16.2%) Protect regions [21], [22] Identify and protect critical regions to ensure mutual exclusion of competing threads. [30] 4.2
Other [21], [22] Modify code to avoid non-determinism using a strategy different than those listed above. For

example, eliminate concurrency altogether, enforce certain deterministic orders between thread
executions, etc.

[31] 4.6

PD Add/modify tests [22] Create new or adapt existing test cases according to the platform it is supposed to run. [32] 1.4

(15.6%) Correct directories [22] The test case is revised to take into account the differences in the paths on each platform. [33] 14.2

RL (10.6%) Release resource [21], [22] Invoke operation to release resource (e.g., memory, file, database or network connection, etc.). [34] 10.6

N Add/modify mocks [21] Rewrite the test to use mocks (e.g., to replace a remote service). [35] 2.4
(8.2%) Add/modify waitFor [21] In the presence of network instability, this repair adds code to retry accessing the remote resource

for a fixed number of times.
[36] 5.8

TOD Setup/cleanup state [21] Flaky tests are fixed by setting up or cleaning up the state shared among the tests. [37] 6.8
(7.2%) Remove dependency [21], [22] Flaky tests are fixed by making local copies of the shared variable to remove the dependencies on it. [38] 0.4

TCT (5.8%) Increase timeout [22] ”The increase of the timeout time is, obviously, the most frequent solution to this type of flakiness.” [39] 5.8

UC (5.0%) Not specific ordering [21] To write tests that do not assume any specific ordering on collections unless an explicit convention
is enforced on the used data structure.

[40] 5.0

R (4.4%) Control the seed [21], [22] ”The developers should control the seed of the random generator such that each individual run can
be reproduced.” [21]

[41] 3.4

No Math.Random [22] Calling Math.random is unreliable. Replace it with a random number generator that accepts an
input seed.

[42] 1.0

T (3.8%) Reduce time impr. [21], [22] Make test more resilient to time and data representations. [43] 3.8

FPO (2.8%) Modify assertions [21] Rewrite test assertions to become independent of floating-point results, which can be imprecise and
lead to intermittent test failures.

[44] 2.8

TST (0.8%) Split test suite [22] Split the test suite that is executed in parallel in smaller chunks to reduce risk of hitting time budget. [45] 0.6
Skip non-init. part [22] ”Code added to skip non-initialized parts to make the test run faster and not timeout.” [46] 0.2

TRR (0.4%) Calibrate assertion [22] Test fails because assertion range is too rigid. Calibrate range of values used in assertions. [47] 0.4

˜ ˜ ˜ ˜ l i b /commands/new . j s
− const subproc = ChildProcess . spawn (’npm ’ , [’ i n i t ’] , { cwd }) ;
+ // Node does not support PATHEXT on Windows
+ const npmCmd = process . platform === ’ win32 ’ ? ’npm. cmd ’ : ’npm ’ ;
+ const subproc = ChildProcess . spawn (npmCmd, [’ i n i t ’] , { cwd }) ;
˜ ˜ ˜ ˜ t e s t /index . j s
+ const normalize = (s t r) => {
+ // Naively normalizes s t r i n g output for OS d i f f e r e n c e s :
+ // backs lashes to f o r e s l a s h e s (paths) and the OS end−of − l i n e to \n .
+ return s t r && s t r . r e p l a c e (/\\/g , ’/ ’) . r e p l a c e (RegExp (Os . EOL, ’ g ’) , ’\n ’) ;
+ }; // use normalize on s t r i n g s

Figure 1: PD, Correct Directories [33].

the normalization function for the sake of space. Note that,
although both changes affect test execution, only the second
change was made within the test code.
RL - Release Resource (10.6%). libvmod-dynamic is a C
module of the system varnish director for the dynamic
creation of backends. Figure 2 shows the fix developers
created when they noticed non-deterministic test outputs.
Developers found that the reason for the bug was a use-
after-free problem in the function dynamic stop(). (They
used Clang’s static analyzer to spot the problem.)

˜ ˜ ˜ ˜ vmod dynamic . c
− dynamic free (NULL, dom) ;

VTAILQ REMOVE(&dom−>obj−>purged domains , dom, l i s t) ;
+ dynamic free (NULL, dom) ; . . .

/* Backends w i l l be dele ted by the VCL, pass a NULL s t r u c t c t x */
+ VTAILQ FOREACH SAFE(dom, &obj−>purged domains , l i s t , d2) {
+ VTAILQ REMOVE(&obj−>purged domains , dom, l i s t) ;
+ dynamic free (NULL, dom) ;

}

Figure 2: RL, Release Resource [48].

AW - Add/Modify waitFor (10.4%). This example describes
a fix of an Async Wait flaky test in the JavaScript project
pwa-studio. The test was fixed with the modification of an
existing ”waitFor” construct. According to Luo et al. [21],
”waitFor” denotes a set of methods used to either let the
current thread busy wait for some condition to become true
or block the current thread until being explicitly notified.
Developers mentioned the following in the discussion of
the issue: ”If you run this test a few times it will be flaky without
waiting an arbitrary time for a promise to finish resolving.” [25].
To circumvent the problem, developers used the NPM wait-
for-expect library, whose function waitForExpect returns
a Promise. The effect of using the await operator on that
Promise object is to proceed with execution only when the
expectations encapsulated in the promise are satisfied.
TOD - Setup/Clenup state (6.8%)

In the following, we describe an issue from a library used
to run Python tests in parallel [37]. xdist [49] is an extension
of the popular Python testing framework pytest [50] that en-
ables parallel execution of test cases. It has been previously
reported that unplanned parallelization of test case runs can
result in flakiness [51]. TOD refers to the scenario when
there is a change in the execution order of two or more tests
that access the same part of the global state and that results
in intermittent failures. Considering this issue, the devel-
oper of the xdist library reported ”test A passes but crashes

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

at teardown; test B is seen as failing but hasn’t been executed
at all. ”Then, (s)he completes with a diagnosis ”When a node
crashes, it pops the running item and reschedule it on a
new node. However, when the node crashes at teardown, the
running item has already been dequeued.” The developer
proceeded as follows to fix the issue: ”I created an explicit
event runtest protocol complete which is sent by workers
after runtestprotocol (protocol refers to fixture method such
as setup, call, and teardown), this way we ensure that a
worker is indeed done with an item.”.
AW - Add/Modify Sleep (6.6%). This example de-
scribes a manifestation of test flakiness from the Python
project rapid-router caused by the slow response time
of Selenium to process a request. Selenium is a
very popular framework for testing web applications.

˜ ˜ ˜ ˜ game/end to end tests/base game test . py
def go to path (s e l f , path) :

− selenium . get (s e l f . l i v e s e r v e r u r l + path)
+ socket . s e t d e f a u l t t i m e o u t (5)
+ attempts = 0
+ while True :
+ t r y :
+ selenium . get (s e l f . l i v e s e r v e r u r l + path)
+ except socket . t imeout :
+ attempts += 1
+ i f attempts > 2 :
+ r a i s e
+ time . s leep (1 0)
+ e lse :
+ break

Figure 3: AW, Add/modify sleep [26].

The test does not
take into account
the fluctuation of
the network load
and occasionally
fails. Figure 3
shows a function
invoked by the
test that invokes
the selenium.get
operation to drive
the web browser to download a web page, which is then
rendered on the screen. The web browser needs to render
the web page on the screen before the test can send events
to the screen objects. However, the code does not take this
into account; the test sends events to objects before the
objects are displayed on the screen. Prior work found that
such ”lag problem” in UI testing is common [52], [53]. The
fixed version of the code addresses the problem by retrying,
for a fixed number of times, to download and render the
operation. A 10s sleep is added between retries to wait for
the rendering task to finish.

3 RESEARCH PROCEDURE

Selection of PLs. We analyzed hundreds of issues associated
with flaky tests. These issues involved a total of 741 open
source GitHub projects written in five programming lan-
guages: C, Go, Java, JavaScript, and Python. The primary se-
lection criterion was popularity according to GitHub’s yearly
survey [24]. Although Go is not among the top-10 languages
reported in the GitHub’s yearly survey, we included it in
our study because Go programs often involve asynchronous
and remote communication, which could increase (or re-
duce, depending on the language support) flakiness due to
concurrent/async communication. These languages are also
important in different domains: Systems (C), Distributed
computing (Go), Android and web back-end (Java), front
and back-end web development (JavaScript), and machine
learning (Python). These languages also provide a diverse
set of abstractions to support concurrency and networking.
For example, while asynchronous programming in Java re-
quires good understanding of threads, monitors, and of how
to manipulate these programming constructs through the
java.util.concurrent package, in JavaScript, asynchronous
computations are abstracted away using constructs like

async (to fork an execution and return an Promise object [54]
to the caller) and await (to wait for a Promise to be resolved
within an async function). Likewise, Go provides Gorou-
tines and channels to facilitate concurrent and asynchronous
programming.

Selection of Issues from GitHub. We followed a similar
procedure to Luo et al. [21] to identify a large corpus of
issues related to test flakiness from open source repositories.
We wrote a Python script that uses the GitHub API to
search for issues (i.e., bug reports) that contain the following
terms: (”flaky” or ”non-det”) and ”test”. As mentioned
above, we restricted our search to issues of projects written
in C, Go, Java, JavaScript, and Python. Furthermore, to make
sure that we focused on issues that developers were able to
properly diagnose and fix test flakiness, we also restricted
the search to (1) closed issues, i.e., issues that have been
resolved; (2) confirmed issues, i.e., issues in which at least
one project contributor confirmed the existence of a flaky
test; and (3) buggy issues, i.e., issues flagged as ”bug” by
the developer. Since our work involves human cognizance
and manual inspection, we limited the number of issues to
analyze. In total, we selected 1,541 issues, nearly 300 issues
per language.

Method for analyzing issues. Two of the authors worked
collaboratively to classify the root cause of flakiness and
corresponding fix strategy for the set of 1,541 issues. To
establish a shared understanding about the causes and
potential fixes, for each issue, the authors used the following
procedure: (1) They studied the issue’s title, body, and the
stack trace, if reported; (2) They checked if any contributor
indicated that the test was indeed flaky; (3) They analyzed
the discussion looking for hints of root causes and potential
fixes, (4) They inspected all commits and pull-requests for
the issue. We inspected the commits and pull-requests asso-
ciated with each issue with the goal of determining the fix
strategy from code. The issue number can be tracked from
the commit data. In case we did not find that information,
we classified only the root cause but not the corresponding
fix. We were unable to classify some of the issues (to identify
root causes) or associated commits/pull-requests (to iden-
tify fixes) for one of the following reasons: (1) Duplicated
(25 issues): An issue was found to be duplicate. For exam-
ple, the following two issues report the same problem [55],
[56]. In those cases, we discarded one of them; (2) False
Positive (400 issues): The precision of our mining script
depends on the rigour of developers in using the word
”flaky”. Not surprisingly, many issues were discarded as
they did not actually describe flakiness manifested in test
runs; (3) Ignored Test (16 issues): Developers occasionally
address flakiness by ignoring the test case [21], [22], [52].
For instance, in a commit to the xtext-eclipse project, the
maintainer added the JUnit annotation @Ignore to ignore a
flaky test [57]. (4) Hard to classify: For some issues we were
unable to identify the root cause (336) or the fix strategy (74).
Table 4 provides a breakdown of the hard-to-classify issues
grouped into five categories. Most of the issues labeled as
hard to classify are related to a poor issue discussion, i.e.,
the issue does not contain enough information to identify
the root cause of flakiness or the fix strategy. For instance,
the issue quic-go #65 [58] has no description and one

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

single general comment, while the issue scope #867 [59]
requires domain knowledge to be understood. The second
most prevalent case for labeling an issue as hard to classify
was the absence of code in the pull request. Based on the
procedures we defined for analyzing the issues, even if
a contributor indicates the existence of a flaky test, if no
code (for fixing the alleged flaky test) is available in the
pull request, we do not proceed with the labeling of the fix
strategy for such an issue. Our method for analyzing issues
favors precision in the labeling over a higher number of
labeled issues.

Table 4: Breakdown of the issues labeled as hard to classify

Category Name Description Total

Poor Discussion Lack of information about the problem (e.g.,
no indication from a contributor that the test
was indeed flaky, no hints regarding root
causes and potential fixes)

151

No code There is no code in the pull request. 94

Long Discussion
or pull request

Discussion with many comments, code, and
logs made it difficult for the authors to reach
a consensus on the issue classification.

86

Tangled issues The discussion refers to multiple problems in
the same GitHub issue.

69

Limited/No
access

Although the discussion started in the
GitHub issue, part of the discussion and/or
the solution points to information that is
available outside the GitHub environment
(e.g., CI platforms such as CircleCI).

10

410

Given the varying number of issues per PL in the
remaining 690 issues we decided to categorize the root
cause and fix strategy of 100 issues for each language.
To that end, two of the authors of this paper performed
an open code procedure [60]. The authors worked inde-
pendently, followed by conflict resolution meetings. When
these authors were uncertain about specific cases, other
researchers joined the discussion to help reach consensus.

C Go Java JS Python
0

20

40

60

80

100

File
Network

Gui
CPU

IO
Other

Figure 4: Distribution of concerns
addressed by the test cases by do-
main category. The Y axis describes
the amount of issue for fix, the X
axis relates to PL and the bar colors
the amount that each domain rep-
resents.

This procedure took ap-
proximately five months.
In the end, we classified
the root cause of 591 issues.
Of these, we classified the
fix strategy of 500 issues.
Figure 4 shows the dis-
tribution of concerns ad-
dressed by the flaky tests
from the fully inspected is-
sues (500). The plot seems
to confirm our expecta-
tions, e.g., less GUI-related
tests in C, more network-
related tests in Go, more
GUI related tests in JavaScript, etc.

4 RESULTS

This section reports the results of our study, whose central
goal is to comprehend the circumstances in which flaky
tests manifest across programming languages. Section 4.1
presents the raw data. The following sections elaborate on
the research questions.

4.1 The raw data

Table 6 shows a summary of the root causes we observed in
our data set. Each row in the table relates to a distinct root
cause, as described on Section 2.1. Column ”Root Cause”
shows the name of the root cause. The subsequent columns
show the number of occurrences of a given root cause in
a PL. Column ”Σ” shows the sum of cases across all lan-
guages. The rows on this table are sorted in decreasing order
of ”Σ”. Column ”#” shows the ranking of the root cause. A
dash (”-”) indicates that the root cause was not observed.
Finally, the last two columns show, for comparison, the
prevalence of that root cause as reported by Luo et al. [21]
and by Eck et al. [22]. At the bottom of the table, the
row ”Σ” shows the totals associated with each ”counter”
column. In total, we were able to classify the root causes
of 591 issues. The highlighted cells on a column indicate
values that are one standard deviation above the mean of
values on that column. For example, the mean number of
occurrences of a root cause in C was 8.2 and the standard
deviation of values was 8.9. For that reason, we highlighted
the values above 17.8 under the column ”C” on Table 6.
Considering this data, note that Async Wait (AW) appears,
globally, as the most prevalent root cause, in coherence with
prior work [21], [52], [53]. Also note that the top 5 causes
listed by Luo et al. [21] appear at the top of this ranking
(as per column ”#”), showing coherence of our results with
theirs. Finally, note that two of the marked values were not
mentioned on the referred studies. Platform Dependency
was not listed as a root cause by Luo et al. [21] and Network
was not listed as a root cause by Eck et al. [22]. Table 7 shows
the summary of fix strategies adopted by developers when
addressing flaky-related issues. The table follows a similar
organization as the table for root causes. At the bottom of
the table, row ”Σ” shows the totals associated with each
”counter” column.

A per-project analysis. Before answering our research ques-
tions we provide a brief analysis assessing the extent to
which the root causes are overrepresented (or underrepre-
sented) on the basis of the projects selected. This is impor-
tant to assess the risk of a small number of projects severely
influencing results of our study. The vast majority of projects
contributed with only 1 issue (267 out 347). 95,7% of projects
contributed with 5 or less issues (332 out 347). Similarly to
the approach followed by Luo et al. [21] (Table 3, Section
3.1), we focus our per-project analysis on those projects that
contributed with more than 5 issues: only 15 (4,3% of the
total number of projects analyzed) — 1 for JS, 2 for Java, 3 for
C, 4 for Python, and 5 for Go. Table 5 summarizes the results
of our analysis. The projects analyzed are displayed in the
rows, while the 13 root causes are displayed as columns.
The last column “Σ” displays the total number of issues
collected from a given project — for an example, a total of
8 issues were collected from the project beats, distributed
across three root causes: 2 Async Wait (AW), 5 Concurrency
(C), and 1 Too Restrictive Range (TRR). The row “Total”
corresponds to the sum of issues for a given root cause
when considering only this selection of 15 projects, while
row “Other Projects” reports the sum of issues for a given
root cause when considering all the projects that contributed
with 5 or less issues. The row “Total Root” reports the total

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

Table 5: Detailed distribution of root causes for the projects with more than 5 flaky tests. Warmer colors (reddish) indicate higher values and
colder colors (greenish) indicate lower values.

Repository/Project Language AW C PD N RL TOD TCT UC T R FPO TST TRR Σ

quic-go go 6 11 2 2 2 1 1 25
cdap java 7 6 2 2 2 1 1 21
zephyr C 2 1 3 2 4 1 1 1 15
mbedtls C 2 1 4 1 2 10
pants python 1 2 1 1 1 1 2 9
plaso phyton 2 1 2 2 1 8
appium js 2 1 1 3 1 8
beats go 2 5 1 8
mbed-crypto C 2 2 2 1 7
oryx java 2 3 2 7
terraform go 1 2 1 1 2 7
ansible python 2 2 2 6
containerpilot go 3 2 1 6
incubator-mxnet python 1 2 2 1 6
weave go 3 1 1 1 6

Total 22 25 5 24 15 6 21 9 8 1 6 1 6 149

Other Projects 81 72 9 48 72 16 40 19 32 4 22 5 22 442

Total Root 103 97 14 72 87 22 61 28 40 5 28 6 28 591

Table 6: Prevalence of root causes across Languages.

Root Cause # Occurrences Ranking as per
C Go Java JS Py Σ [21] [22]

1 Async Wait (AW) 7 31 27 21 17 103 1 2
2 Concurrency (C) 15 31 25 15 11 97 2 1
3 Platform Dependency (PD) 16 8 9 24 30 87 - 7
4 Network (N) 5 31 10 16 10 72 5 -
5 Resource Leak (RL) 33 9 8 7 4 61 4 6
6 Test Order Dependency (TOD) 9 5 6 10 10 40 3 4
7 Time (T) 5 4 6 3 10 28 6 10
7 Test Case Timeout (TCT) 6 6 6 6 4 28 - 5
7 Unordered Collections (UC) - 4 4 8 12 28 10 -

10 Randomness (R) 7 4 4 5 2 22 8 11
11 Floating Point Operations (FPO) 2 - 4 1 7 14 9 8
12 Too Restrictive Range (TRR) 1 - 5 - - 6 - 3
13 Test Suite Timeout (TST) 1 2 - 1 1 5 - 9

Σ 107 135 114 117 118 591

number of issues considered for a given root cause — for an
example, when considering the root cause Async Wait (AW)
we can say that out of the 103 issues analyzed, 22 were
selected from this selection of 15 projects, whereas 81 issues
were selected from the remaining 576 projects. Overall, we
can see that even for this selection of 15 projects the collected
issues were well distributed across the different root causes.
Indeed, in most of the cases only one or two issues were
collected for the same root cause (notice the high number
of ‘1’s’ and ‘2’s’ in the table). Only two projects contributed
with more than 5 issues for the same root cause: quic-go,
with 6 Concurrency (C) issues and 11 Network (N) issues;
and cdap, with 7 Async Wait (AW) issues and 6 Concurrency
(C) issues. The 11 Network (N) issues collected from quic-
go represent the maximum number of issues for the same
root cause contributed by any of the projects analyzed; They
account for ≈ 15% (11/72) of the total number of Network
(N) issues, and≈ 10% (11/107) of the total number of issues
analyzed for the projects in Go. The 7 Async Wait (AW)
issues collected from cdap account for only ≈ 6% (7/103) of
the total number of issues from that root cause. We conclude
that it is not the case that the root causes are overrepresented
(or underrepresented) on the basis of the projects selected.

4.2 Answering RQ1: Concentration
The first research question we posed is as follows: Is it
the case that, for a given PL, a small fraction of sources and

Table 7: Prevalence of fix Strategies across Languages.

Fix Strategy # Occurrences Ranking as per
C Go Java JS Py Σ [21] [22]

1 PD - Correct Directories 11 7 9 23 21 71 - 12
2 RL - Release resource 31 8 6 4 4 53 - -
3 AW - Add/modify waitFor 6 13 15 13 5 52 1 1
4 TOD - Setup/cleanup state 7 4 6 8 9 34 3 -
5 AW - Add/modify sleep 1 14 9 3 6 33 2 -
6 TCT - Increase Timeout 6 6 7 6 4 29 - 6
6 N - Add/modify waitFor 2 9 6 8 4 29 - -
8 UC - Not Specific Ordering - 4 3 8 10 25 - -
9 C - Other 3 7 8 3 2 23 5 13

10 C - Protect regions 6 7 3 2 3 21 4 7
11 T - Avoid Time Imprecision 5 1 4 2 7 19 - 15
11 C - Change condition 5 2 5 6 1 19 6 5
13 C - Add/modify waitFor 1 6 5 3 3 18 - 2
14 R - Control the Seed 6 3 2 4 2 17 - -
15 FPO - Revise assertions 2 - 4 1 7 14 - -
16 N - Add/modify Mocks 1 4 4 1 2 12 - -
17 AW - Reorder execution - 2 1 3 5 11 7 9
18 PD - Add/modify tests 4 - - - 3 7 - 10
19 R - No Math.Random 1 1 2 1 - 5 - 13
20 TST - Split Test Suite - 2 - - 1 3 - 15
21 TRR - Calibrate assertion 1 - 1 - - 2 - 4
22 TOD - Remove Dependency 1 - - - 1 2 6 3
22 TST - Skip Non-Initialized Part - - - 1 - 1 - 13

Σ 100 100 100 100 100 500

corresponding fix strategies are associated with the majority of
the issues? The answer to this question enables researchers
and practitioners to focus on a small set of causes and fixes.

Tables 8 and 9 summarize our observations about the
concentration of root causes and their corresponding re-
pairs. More precisely, these tables show the percentage of
the issues that are covered at different cutoff points of the
rankings of root causes and fix strategies. Let us consider
Table 9, which reports on the concentration of fix strate-
gies. Column ”PL” shows the programming language, the
columns under ”%” show the percentage of issues covered
by the top-N (N=1, 3, 5, and 10) fix strategies of a given
PL. For example, considering Python, we found that 40%
of the issues (Table 7, column ”Python”) use the three most
common fix strategies adopted by developers.

Overall, results indicate that 78.07% of the issues asso-
ciated with any given PL are related to five root causes.
This number corresponds to the average of the values from
column ”top 5” on Table 8. For Go projects, we observed
that 68.89% of the issues are related to the top 3 root

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Table 8: Root Causes.

PL % of issues
top 1 top 3 top 5 top 10

C 30.84 59.81 81.31 98.13
Go 68.89 68.89 81.48 98.52

Java 23.68 54.39 69.30 100.00
JS 20.51 52.14 73.50 98.29

Python 25.42 50.00 84.75 97.46

Table 9: Fix strategies.

PL % of issues
top 1 top 3 top 5 top 10

C 31.00 49.00 73.00 87.00
Go 14.00 36.00 65.00 89.00

Java 15.00 33.00 48.00 76.00
JS 23.00 60.00 60.00 92.00

Python 21.00 40.00 54.00 82.00

causes. That mark is well above the mark of different PLs
at the same cutoff point. The three most prevalent root
causes that we observed in Go are Async Wait, Concurrency,
and Network. Curiously, one important use case of the Go
language is distributed and asynchronous computing [61],
[62], which is related to these root causes. We conjecture
that the higher number of issues involving those three root
causes is a confirmation that programs in that language
highly use asynchronous communication, concurrency, and
the network. Results also show that 85.20% of the flaky tests
can be fixed with one of the ten most common fix strategies
(avg. of column ”top 10” on Table 9). Note that developers
used only 43.48% of the fix strategies to fix most flaky tests.

Summary RQ1: Our results show that, for any given
language, most issues can be explained by a small fraction of
root causes (5/13 root causes cover 78.07% of the issues) and
can be fixed by a relatively small fraction of fix strategies
(10/23 fix strategies cover 85.20% of the issues).

4.3 Answering RQ2: Similarity
The second research question we posed is: How (dis)similar
are the root causes and fix strategies across PLs? Answering
this question enables one to decide whether tuning analysis
(e.g., flakiness detection techniques) to specific languages
is a relevant problem. If, for example, results show that
the causes and fixes have similar manifestations across
languages, then adaptation of tools to particular PLs would
be unjustified.

4.3.1 Root Causes
As Table 6 indicates, Async Wait (17.43%), Concurrency
(16.41%), and Platform Dependency (14.72%) are the most
prevalent root causes, overall. In Go and Java, particu-
larly, Async Wait corresponds to 22.96% and 23.68% of
the total number of root causes inspected, respectively.

Table 10: Similarity of root causes.
C Go Java JS Py

AW • • • • •
C • • • • •

PD • • • • •
N • • • •
RL • • •

TOD • • •
R •
T •

UC •

Table 10 summarizes the
(dis)similarity of root
causes across languages.
We included on this
table any root cause that
appeared among the
top 5 most prevalent on
any given programming
language (see Table 6). A
bullet (•) indicates that
the root cause is among the top 5 root causes to explain
flakiness in the corresponding language. In the event of
a tie in the 5th position, we added a bullet to each of the
tied root causes (this is the reason why C and Python have
more than 5 bullets). For example, overall, Network (N)
is among the top 5 most prevalent root causes, but it is

Table 11: Similarity of fix strategies.

Prevalence ∆
C Go Java JS Py C Go Java JS Py

AW - Add/modify waitFor • • • • • 1 1 2 1 4
PD - Correct Directories • • • • • 1 4 1 0 0
RL - Release resource • • • • • 1 2 4 6 ⇓ 7 ⇓
TCT - Increase Timeout • • • • • 1 2 1 0 3
TOD - Setup/cleanup state • • • • • 1 6 ⇓ 2 1 1
AW - Add/modify sleep • • • • 9 ⇓ 4 3 5 1
N - Add/modify waitFor • • • • 6 ⇓ 3 0 3 1
C - Add/modify waitFor • • • 1 5 4 3 1
C - Change condition • • • 3 3 3 5 7 ⇑
C - Other • • • 2 4 5 1 6
UC - Not Specific Ordering • • • 12 ⇓ 2 3 5 6 ⇑
AW - Reorder execution • • 3 3 1 7 ⇑ 10 ⇑
C - Protect regions • • 6 ⇑ 5 4 4 2
R - Control the Seed • • 10 ⇑ 1 2 6 ⇑ 1
T - Avoid Time Imprecision • • 3 6 ⇓ 0 3 7 ⇑
FPO - Revise assertions • 3 4 4 1 11 ⇑
N - Add/modify Mocks • 2 6 ⇑ 5 0 1
PD - Add/modify tests • 8 ⇑ 1 2 2 6 ⇑

not frequent in C. Unordered Collections (UC), in contrast,
is very common in Python, but less common in the other
four languages. We sorted the rows in this table by the
number of bullets. The rows at the top indicate the cases
that are more similar; highlighted rows show root causes
that are prevalent in all languages. The rows at the bottom of
the table show the cases more dissimilar. It is worth noting
the prevalence of Platform Dependency (PD) issues in all
languages, especially considering that Luo et al. [21] did
not list that root cause in their study and that Eck et al. [22]
found that root cause was not highly common in their study
with flaky tests from Java programs; they found PD to be
the 7th most prevalent root cause. Considering only Java
programs, PD was the 4th most prevalent root cause in our
data set, behind AW, C, and N.

4.3.2 Fix Strategies
Table 11 reports on the (dis)similarity of fix strategies across
languages. This table includes any fix strategy that appears
among the top 10 most prevalent strategies on any given
programming language (see language columns on Table 7).
A bullet (•) indicates that the fix strategy is among the top
10 strategies to address flakiness in a given language. As in
Table 10, we sorted the rows in this table by the number of
bullets. The rows at the top indicate the most similar cases;
highlighted rows show the fix strategies that are prevalent
in all languages. The rows at the bottom of the table show
the fix strategies that are most dissimilar amongst those that
are prevalent on at least one programming language. For
instance, Test Order Dependency (TOD) was found to be a
frequent kind of root cause in C, JS, and Python, but it was
not very common in Java. This is surprising given that the
object of study of recent work on flakiness was TOD in Java
projects [63].

The view on the left-hand side of the table highlights
the (dis)similarity of fix strategy across languages, but it
fails to quantify the discrepancy. To fill that gap, Table 11
also reports, at the right-hand side, the absolute difference
—referred to as ∆— between the average ranking of a
fix strategy, as listed under the column ”#” from Table 7,
and the PL-specific ranking of a fix strategy. For example,
consider the cell associated with Go and ”PD - Correct
Directories”. The value 4 is the absolute difference between
1, which corresponds to the rank of that fix strategy in the

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

aggregate ranking (Table 7, column ”#”), and 5, which cor-
responds to the position of that same strategy in the ranking
associated with Go (obtained from Table 7, column ”Go”).
We highlighted the cells whose values of ∆ are above 5;
these are the cases with higher discrepancies. The direction
of the double arrow in those cells indicates the increase (⇑)
or decrease (⇓) in the frequency of observations of that fix
strategy relative to the aggregate ranking. The number of
up and down arrows provides a rough indication of how
much a language differs from the average. For example,
compared to the average ranking (see Table 7), Java is the
least discrepant whereas Python is the most discrepant.
Section 5 discusses notable cases. For example, we observed
that ”UC - Not Specific Ordering” was rarely used in Java
and C, whereas ”AW - Add/modify sleep” was rarely used
in C.

Summary RQ2: Results indicate that a small set of
root causes and fix strategies are common regardless of
the programming languages, but some languages have their
specificity. For instance, the root cause RL is particularly
prevalent in C whereas the root cause N is particularly
prevalent in Go (and T and UC in Python).

4.4 Answering RQ3: Cost

The third research question we posed is as follows: How
costly is it to resolve flaky tests? This question focuses on
cost, which is a more qualitative aspect compared to preva-
lence and similarity. We started our analysis inspecting
two metrics: (M1) number of days between opening and
closing an issue and (M2) number of comments in the
discussion thread within that time interval. It is worth
noting that assessing resolution cost and importance of
an issue is challenging as it depends on a number of
factors. For example, too long resolution time may indi-
cate that a task has been neglected for its lower impor-
tance as opposed to indicate the contrary, i.e., that fixing
the flaky test is intrinsically complex and time-consuming.
Nevertheless, these metrics help us acquiring a grasp on
resolution cost and importance. For comparison with the
issues related to flaky tests, we mined 1K ”non flaky”
issues for each programming language. The extraction
of those metrics is automated through the GitHub API.

Table 12: Number of days
and comments until issue is
closed.

C Go Java JS Py
M1 - Number of days

Flaky 123 58 61 77 86
Other 14 14 19 15 20

M2 - Number of comments
Flaky 10 4 5 11 6
Other 3 1 1 1 2

Table 12 shows results for M1
at the top and results for M2 at
the bottom. Rows ”Flaky” and
”Other” list, respectively, results
associated with flaky test issues
and other issues. The key ob-
servations from these results are
that: (1) Compared to ”Other”,
issues related to flaky tests take
longer to resolve and involve
more discussion, (2) C, JavaScript, and Python showed the
highest difference in resolution time between flaky and
other issues, and (3) C and JavaScript showed the highest
difference in number of comments.

Figure 5 shows the histograms of resolution time on each
analyzed language for the flaky and “non flaky” test issues.
The size of the dark-colored bar indicates the percentage of
issues closed within a given time interval whose discussion

threads contained a number of comments below the average
for the respective language. Likewise, the size of the light-
colored dashed bar indicates the percentage of closed issues
with number of comments above the average. For the flaky
test issues, the key observations are that, most notably in
C, many issues seem to be resolved late after it is opened,
suggesting that those problems are not all that relevant
(observe the red line at the time interval ”>100”). However,
surprisingly, many of those issues have an above-average
number of comments, indicating that they were not trivially
resolved. More importantly, results indicate that, for any
given language, many issues are resolved a few days after
they are opened, suggesting they are important, and some
of them involve more discussion than average, especially
in C, Java, and Python. We also noticed that flaky tests in
JavaScript involved less discussion, overall, suggesting they
were easier to address. In fact, most JavaScript issues are
related to Platform Dependency, which we indeed found to
typically require simple fixes (e.g., revise paths). Regarding
the ”non flaky” test issues we observed that they are gen-
erally resolved faster than the flaky test issues in the same
project and, for all the languages analyzed, that most of the
issues are resolved a few days after they are opened (notice
the sharp drop of the red line in all the plots after the time
interval ”10”).

Table 13: Number of issues with resolution
time no longer than 60 days and number of
comments above average.

Fix Strategy C Go Java JS Py Σ

PD - Correct Directories 1 2 3 2 5 13
AW - Add/modify waitFor 2 3 2 - 2 9
RL - Release resource 6 - - - 2 8
AW - Add/modify sleep - 2 2 1 2 7
C - Other 1 2 1 - 1 5
N - Add/modify waitFor - 3 1 - 1 5
TOD - Setup/cleanup state 2 - 1 - 2 5
TCT - Increase Timeout - - 2 - 2 4
C - Protect regions 2 1 - - - 3
PD - Add/modify tests 2 - - - - 2
T - Avoid Time Imprecision 1 - 1 - - 2
N - Add/modify Mocks - 1 1 - - 2
AW - Reorder execution - - - - 2 2
FPO - Revise assertions 1 - - - - 1
R - Control the Seed - 1 - - - 1
C - Change condition - - 1 - - 1
UC - Not Specific Ordering - - - 1 - 1
C - Add/modify waitFor - - 1 - - 1

Table 13 shows,
for different pairs
of fix strategy and
language, the num-
ber of issues re-
solved within 60
days whose discus-
sion threads con-
tained more com-
ments than aver-
age. The rationale
for the selection was
to focus on the
cases that are pre-
sumably more com-
plex (as per num-
ber of discussions)
and more pressing
(as per time to address) to resolve. Overall, we observed that
the fix strategies did not change much, compared to Table 7,
suggesting that analyzing issues based on prevalence and
on cost resulted in similar observations.

Given that the time from opening to closing an is-
sue can be highly influenced by the characteristics of
individual projects, we also performed an additional

Table 14: Number of days and comments
until issue is closed (per-project analysis).

C Go Java JS Py
zephyr quic-go cdap appium pants

M1 - Number of days
Flaky 213 32 7 223 142
Other 24 3 1 1 1

M2 - Number of comments
Flaky 17 2 3 49 8
Other 1 3 1 2 2

study on the costs
to resolve flaky
tests on 5 projects;
one project per
programming
language. For each
PL, we selected the
project with the
highest number of
flaky tests: quic-go, cdap, zephyr, pants, and appium.
Details for these projects are presented on Table 5. Table 14

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

10 20 30 40 50 60 70 80 90 100>100
0%

20%

40%

60%

80%

100%
C

10 20 30 40 50 60 70 80 90 100>100

Go

10 20 30 40 50 60 70 80 90 100>100

Java

10 20 30 40 50 60 70 80 90 100>100

JavaScript

10 20 30 40 50 60 70 80 90 100>100
0

20

40

60

80

100Python

(a) Flaky test issues

10 20 30 40 50 60 70 80 90 100>100
0%

20%

40%

60%

80%

100%
C

10 20 30 40 50 60 70 80 90 100>100

Go

10 20 30 40 50 60 70 80 90 100>100

Java

10 20 30 40 50 60 70 80 90 100>100

JavaScript

10 20 30 40 50 60 70 80 90 100>100
0

200

400

600

800

1000Python

(b) ”non flaky” test issues

Figure 5: Histograms of distributions of resolution time for flaky and ”non flaky” issues. The x-axis shows the time interval in number of days. For
a given language and time interval, the dark-colored bar and the light-colored dashed bar indicate the percentage of issues closed whose discussion
threads contained a number of comments below and above the average, respectively (left y-axis). The red line (right y-axis) represents the total
number of issues closed in each time interval for a given language.

shows the costs to resolve issues on the projects analyzed
based on the number of days (M1) and number of commits
(M2) until the issue is closed. Overall, we can see that the
results are similar to those observed when considering the
data grouped by PL, i.e., when compared to “Other”, issues
related to flaky tests take longer to resolve and involve
more discussion. The highest difference in resolution time
between flaky and other issues is observed for the projects
appium and pants.

Summary RQ3: Overall, the data shows that many flaky-
related issues are resolved early (suggesting importance)
and many of those issues involve more discussion than
average (suggesting complexity). Results provide initial ev-
idence suggesting that resolving flakiness is costly some-
times.

5 DISCUSSION

This section discusses the data presented in the previous
sections.
Comparison with Luo et al. [21] and Eck et al. [22] Luo et
al. and Eck et al. studied test flakiness on projects written in
Java. We found, perhaps not unexpectedly, that the ranking
of root causes we obtained for Java was similar to the one
reported by Luo et al. [21]. For example, the top 5 root
causes reported by Luo et al. [21] overlap with the top 6
root causes that we found for Java. The difference between
these two sets was the root cause ”Platform Dependency”,
which Luo et al. [21] did not consider. In contrast, when
comparing our ranking with that of Eck et al. [22], we
observed important differences. For example, we found
very few cases of ”Too Restrictive Range”, which, strangely,
appeared as the 3rd most prevalent root cause in their data
set. To recall, that fix is used when the developer observes
that an assertion should be more permissive as to admit
a wider range of possible values (see Table 2). Curiously,
most cases of this root cause we found appeared in issues of
Java projects; 5 of the 6 cases. The most notable discrepancy
that we observed between our findings compared to prior
work was the prevalence of flakiness due to ”Platform

Dependent” issues. That cause appeared at the top of the
ranking in JavaScript and Python and was relatively com-
mon in C (2nd) and Java (2nd). That root cause has only
one associated fix strategy, which appeared as the most
prevalent strategy when considering the aggregate ranking
(see Table 7). Luo et al. [21] did not mention this category
in their paper, perhaps because they considered the case
to be manifestations of non-portable code as opposed to a
legitimate source of flakiness. Note that the execution envi-
ronment needs to change in order to observe the instability.
Eck et al. [22] identified this source of flakiness. In contrast
to our findings, however, they found that it was not very
common. This is surprising given that 14.2% of the 591issues
we analyzed are of this kind and they appear in all PLs we
analyzed. Despite their high frequency, we noted from the
discussion threads that the flakiness of this kind are easy to
diagnose and fix by the developer.

Distribute computing with care (Go). We observed that
flaky tests due to Async Wait, Concurrency, and Network
issues are highly common in all languages. However, com-
pared to other languages, Go shows a substantially higher
concentration of these three root causes. A total of 68.89%
of the flaky tests analyzed in Go are related to these root
causes. Perhaps the reason for this concentration is related
to the fact that the most common use cases of Go are in
distributed computing. For instance, Go provides channels
and Goroutines to facilitate concurrent and asynchronous
programming. Ray et al. [64] conducted a popular study re-
lating programming languages and code quality, including
bug proneness. It is worth noting that this study does not
attempt to compare robustness of programming languages
to test flakiness. Instead, our focus is on understanding the
test flakiness phenomena across programming languages.
(Section 6 discusses implications.)

Do no block the Web (JS). Async Wait issues are the
most predominant root cause of flaky tests, overall. In
that category, ”Add/Modify waitFor” and ”Add/Modify
sleep” were the fix strategies employed more frequently.
Interestingly, we found that JavaScript developers employed

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

almost exclusively the ”Add/Modify waitFor” idiom, which
is typically implemented using asynchronous constructs. We
believe there are two reasons for that: 1) Until ECMAScript
8 (released in 2017), JavaScript did not have a native sleep
function that would enable the adoption of ”Add/Modify
sleep”; By means of comparison, Promises were introduced
in 2015 and async/await constructs were introduced in 2016;
2) async/await constructs are broadly encouraged. It was
not uncommon to find issues showing the intent to refactor
all test cases to use async/await (e.g., [65]).

Suboptimal approaches to fix flakies. Although ”waitFor”
can be implemented in various ways, we found that ”busy
wait(ing)” is the preferred choice of developers as it is
easy to implement [66]. However, ”busy wait” unnecessarily
burns CPU cycles and its adoption can become problematic
when (1) it is important to speed up regression testing [51]
and (2) it is broadly used in a test suite to circumvent flaki-
ness. Still related to Async Wait, we noticed a large number
of fixes that add or increase ”sleep” time on test cases as to
avoid the test code accessing a resource before that resource
is ready to be used. Although that strategy does not burn
CPU cycles (as the running thread is suspended) the effect
is similar to busy waiting, i.e., it slows down regression test-
ing. We conjecture that developers are anxious to address
flakiness and choose the solutions that can be implemented
the fastest. It is worth noting that libraries to handle async
waits exist. For example, the Awaitility Java library [67] is
designed to synchronize asynchonous operations and is fre-
quently used to coordinate operations in UI testing, which is
well-know to manifest flakiness related to problems such as
accessing UI widgets before they are propertly rendered on
screen [52], [53]. The fix strategy ”C - Other” is also rather
common, corresponding to 28.40% of the fixes related to
Concurrency. To recall, this fix strategy uses a mechanism
other than those listed on Table 3 to handle flakiness due
to concurrency. For example, in the project bajel [68] devel-
opers reported a race condition that occurs when a file is
not available during a directory scan. Developers observed
that an exception is raised whenever the race is manifested,
but instead of fixing the code to prevent the race developers
ignore the test execution if the race occurs. To circumvent the
problem, developers wrapped the code raising the exception
in a try block associated with an empty catch block. If a race
condition occurs, an exception is raised, then captured by
the catch block, and the test is considered to pass.

Long duration issues (C). On average, a flaky issue is
fixed in 80.9 days. However, flaky issues in C are fixed in
123 days on average (1,5× longer than the average). We
found 31 issues in C that took more than 100 days to be
fixed. When analyzing those issues, we noticed dormant
behavior [69], i.e., the issues remained opened for a long
time –often years– waiting someone to fix it. An example of
this is the issue #1099 from the stellar-core project, which
did not receive one single comment during a period of two
years. Although some issues in C were actively discussed
and received many fix attempts, they still required years
to be properly fixed and closed. One example is issue #1129
from the mbedtls project, which reported a Release Resource
bug, and received 40 comments, but took nearly a year to be
closed.

6 IMPLICATIONS

elaborate We detail the implications of our findings in the
following.

Practice. The answers to our research questions are im-
portant for testers writing code in a certain language. For
example, when observing that a given test manifests non-
deterministic behavior, developers should focus their atten-
tion to certain root causes that are more prevalent for the
language under use. Once a root cause is identified, the
scope of possible fix strategies can also be reduced. For
JavaScript code, we found that when an Async-Wait (AW)
problem is detected, the probability that an ”Add/modify
waitFor” solution is used to repair the problem is much
higher compared to the probability of using the two other
AW solutions. Of course such implications hold only if
the reported results can be generalized, which can only be
achieved by conducting additional studies.

Research. Our findings can also enable the development of
better techniques for the analysis of flakiness. For example,
researchers could leverage our findings to propose special-
ized test repair tools. A test repair tool for JavaScript would
recommend developers to adjust the timeout of a test case
(”TCT - Increase Timeout”) with high probability and would
recommend with lower probability the increase of sleep
time (”AW - Add/modify sleep”). Naturally, additional
test data, such as execution logs, should be used to drive
the repair. Likewise, static flaky test detectors [9]–[12], [23]
could discriminate root causes that are more relevant to a
certain language with the goal of improving precision at
the expense of a marginal loss in recall. These tools use
text classifiers created from canonical representations of test
cases. For example, we observed that 68.89% of the issues
in Go are related to only three root causes and 65% of
the flaky tests were fixed with five (out of 23) different
fix strategies. One route to improve precision is to define
custom features to identify the most common root causes
from a given language. Considering Go, for instance, the
classification model of a flaky detector could be augmented
with three extra features that identify the presence of the
three most prevalent root causes of flakiness. For that, one
can write a set of patterns to identify asynchronous compu-
tation, concurrency, and network accesses in the test cases
of Go projects. To sum up, the information we collected can
provide helpful guidance for tools that make probabilistic
decisions. Test repair tools and flaky detectors are two good
examples of such tools. We considered the development of
such tools to be out of scope of this work.

7 THREATS TO VALIDITY

This study has different threats to validity. First, we could
have made mistakes in the categorization of the root causes
and fix strategies. Two authors of this paper led the ef-
fort of analyzing the many issues. The process was time-
consuming—spanning several months—and was not im-
mune to errors as it is based on human interpretation. To
mitigate that threat, meetings with all authors were held
twice a week to discuss selected issues, each of the two
“inspector” authors analyzed each issue separately, and
discussed the cases where there was initial disagreement to

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

reach consensus. Second, the quality of the text describing
issues could have influenced the judgement of our inspec-
tors. To mitigate that threat, we discarded issues for which
we were not confident. It is worth noting that using issues
as the object of our study was key to 1) analyze flaky
tests with higher confidence and 2) to scale our study to a
large number of cases. Considering 1), maintainers possess
technical and domain knowledge that we cannot match.
They are more likely to understand the outcome of a test
run. Also, the studied projects oftentimes rely on continuous
integration environments, which help maintainers to easily
pinpoint tests executions that are likely to be flaky. Consid-
ering 2), it would be impractical and ineffective to analyze
ourselves the root causes and fixes from each project. Our
data set includes a total of 591projects. To independently
assess root causes and implement fixes, we would need
to configure the project, execute the test suites, inspect the
test outcomes, diagnose flakiness, and implement the fixes.
The maintainers of these projects have already performed
all those tasks. We focused on digesting the information al-
ready available in the discussion threads of issues and their
corresponding commits. Third, our findings are restricted
to the data set of issues we mined. Section 3 describes
the rationale we used to define our search criteria. For
example, the choice of search query was made with the
goal of reducing false positives. Also, we used a cap on the
number of issues for the sake of time. After five months
of analysis, we ended up discarding 400 false positives.
(25.95% of the total). Nevertheless, in terms of size of the
dataset, our dataset greatly expands the dataset of related
works that leverage qualitative analysis to find flakiness
causes and solutions. For example, Luo et al. [21] analyzed
201 commits in 51 Java projects, Eck et al. [22] curated 200
flaky tests previously fixed and asked developers to classify
them, Thorve et al. [70] studied 77 commits in 29 Android
projects, and Romano et al. [53] found 235 flaky UI tests
in 62 projects. Finally, we focused on a small selection of
programming languages. Our findings are restricted to that
set. Although different languages can bring new surprises,
we believe that the central message of our study remains
even with the inclusion of other languages. For example,
we observed commonalities and differences in root causes
and fix strategies across languages. Fourth, our findings for
RQ3 may have been influenced by project-specific charac-
teristics influencing the time from opening to closing an
issue. To mitigate this threat, we performed an additional
study on the costs to resolve flaky tests on 5 projects –
one per language– and the results were similar to those
observed when considering the data grouped by PL, i.e.,
when compared to “Other”, issues related to flaky tests take
longer to resolve and involve more discussion.

8 RELATED WORK

Empirical studies. Several studies were conducted to
characterize flaky tests. To the best of our knowledge,
Luo et al. [21] were the ones that first attempted to classify
the source of flakiness and the strategies to fix them. Their
work is based on 201 commits made to∼51 Apache projects.
Among their contributions, they presented a taxonomy of
10 sources of test flakiness. The authors also observed

that the most common reason is related to Aync Wait and
Concurrency (see Table 1). Thorve et al. [70] conducted a
study about test flakiness focused on 29 Android apps and
observed that the causes of flakiness in Android apps are
similar to those found by Luo et al. [21]. More recently,
Ray et al. [53] also studied flaky tests in UI tests, a category
of tests that others [52], [71] also found to manifest lots
of flakiness. They analyzed 235 flaky test samples from
Android apps (83) and web projects (152). By also using
the taxonomy provided by Luo et al. [21], the authors found
that the majority of flaky tests are due to Async Wait code, a
finding also observed in this study. Although their work also
explored multiple programming languages (e.g., JavaScript,
TypeScript, Kotlin, and Java), the focus of the paper was the
UI; the paper did not attempt to analyze similarities and
differences of flakiness manifestations across programming
languages. The work of Vahabzadeh et al. [72] focused on
bugs on test case. When investigating 499 buggy test cases,
the authors observed that ∼21% of them are actually flaky
ones. Among these flaky tests, the most common ones were
related to Async Wait, Race Condition, and Concurrency
Bugs. Eck et al. [22] curated a corpus of 200 flaky tests, and
then asked the developers that fixed these tests to provide
their rationale regarding their fix strategies. In this study,
the authors also reported that Async Wait and Concur-
rency are the most common reasons for flakiness. Similar
to Eck et al. [22], Ahmad et al. [73] conducted a survey with
practitioners and accessed the codebase of two software
companies aimed to catalog root causes and fix strategies
of test flakiness. Async wait was also the most common root
cause for flakiness. Lam et al. [74] studied the evolution of
55 Java projects to determine when a flaky test is introduced
(or observed) in the codebase. Among the findings, the
authors observed that the majority of the flakies (75%) are
introduced at the moment they are created; this proportion
increases to 85% when considering new tests and existing
(yet modified) tests. Most of these studies though focus
on Java programming language and its ecosystems. More
recently, Gruber et al. [75] studied the presence of flaky tests
in Python. The authors ran the tests of 22k Python projects
for 400 times and observed that flaky tests in Python are as
commonplace as in Java, happening in 0.8% of the studied
test cases. Given the method used in the work to identify
flakiness led to the inflation of flakies detected due to Test
Order Dependency (TOD), it is not valid to compare the
results they obtained with ours. Two hundred reruns of the
400 of each test suite execute test cases in different orderings,
an approach similar to that adopted by iDFlakies [76]. Not
surprisingly, the authors observed that the majority of the
tests are flaky due to TOD.

Detection Techniques. The problem of automated detection
of test flakiness was intensively investigated in research [9]–
[13], [15], [16], [23], [74], [76], [77]. Gambi et al. [77] proposed
a practical approach, based on flow analysis and iterative
testing, to detect flakiness due to broken test dependencies.
Shi et al. [15] proposed iFixFlakies to find and fix flaky tests
caused by broken test dependencies. Bell et al. proposed
DeFlaker [13], a dynamic technique that monitors the latest
code changes and marks any new failing test that did
not execute changed code as flaky tests. Dong et al. [16]

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

proposed FlakeShovel, a tool to detect flakiness in An-
droid apps by monitoring and manipulating thread exe-
cutions to change event orderings. Machine learning ap-
proaches have also been used to try to predict flakiness.
King et al. [10] used Bayesian networks for flakiness clas-
sification. Pinto et al. [11] used classical machine learning
algorithms and NLP techniques to classify flaky test cases.
Alshammari et al. [23] improved their classication models
by using additional features. Haben et al. [78] replicated
the work of Pinto et al. [11] on Python projects and by
also extending the set of features they used. Overall, these
studies provide evidence that static detection of flakiness
using ML classification is promising. However, further work
needs to be done to avoid overfitting the models to the
training data sets. Although our work does not directly con-
tribute with new techniques to detect flakiness, our findings
(e.g., focusing on a subset of fix strategies covers a good
proportion of the causes) could help researchers design
better detection tools. Lam et al. [74] recently conducted
a longitudinal study to observe when –during evolution–
flakiness could be observed in tests. They found that 75% of
the cases of flakiness could be detected when the test is cre-
ated and another 10% of the cases could be detected when
the test is modified. Based on those findings, a development
team could configure continuous integration pipelines [79]
to provision the execution of flakiness detectors on tests
created or modified; thus, amortizing the detection cost and
reducing the chances that flakiness is detected at failure
time, when the pressure to deliver fixes is much higher.

9 CONCLUSIONS

Flaky tests are a serious problem to the effectiveness of
regression testing. Several empirical studies have been con-
ducted to comprehend the flakiness phenomena, but they
focus predominantly in Java. The goal of this paper is
to understand the relationship between the programming
language and the flakiness phenomena. We selected lan-
guages to analyze that are highly popular and that deal
distinctly with concurrency and asynchronicity, which have
been shown to be linked to flakiness. We observed e.g.
that 1) a small fraction of root causes can explain most
cases of flakiness, 2) a small fraction of fixes are used
to circumvent flakiness, and 3) there is a high similar-
ity of root causes and fixes across languages. It is worth
noting that the generality of these findings is limited by
the set of projects and languages that we analyzed. The
artifacts produced during this study are publicly available:
https://github.com/Test-Flaky/TSE22.

ACKNOWLEDGMENT

This research was partially funded by INES 2.0, FACEPE
grants PRONEX APQ 0388-1.03/14 and APQ-0399-1.03/17,
CAPES grant 88887.136410/2017-00, and CNPq grant
465614/2014-0. Keila was supported by a FACEPE fellow-
ship number IBPG-1316-1.03/19.

REFERENCES

[1] J. Micco, “Flaky tests at google and how we mitigate
them,” 2016, https://testing.googleblog.com/2017/04/where-do-
our-flaky-tests-come-from.html.

[2] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thum-
malapenta, “Root causing flaky tests in a large-scale industrial
setting,” in ISSTA, 2019, p. 101–111.

[3] J. Listfield, “Where do our flaky tests come from?” 2017,
https://testing.googleblog.com/2016/05/flaky-tests-at-google-
and-how-we.html.

[4] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy, “The art of
testing less without sacrificing quality,” in ICSE, 2015, p. 483–493.

[5] “Github: Reducing flaky builds by 18x.” 2020, https : / /
github.blog/2020-12-16-reducing-flaky-builds-by-18x/.

[6] M. Harman and P. W. O’Hearn, “From start-ups to scale-ups:
Opportunities and open problems for static and dynamic program
analysis,” in SCAM, 2018.

[7] C. Developers, “Chromium flakiness dashboard howto,”
http://www.chromium.org/developers/testing/flakiness-
dashboard, 2021.

[8] T. Winters, T. Manshreck, and H. Wright, Software Engineering
at Google: Lessons Learned from Programming Over Time. O’Reilly
Media, 2020. [Online]. Available: https://books.google.com.br/
books?id=TyIrywEACAAJ

[9] K. Herzig and N. Nagappan, “Empirically detecting false test
alarms using association rules,” in ICSE, 2015, pp. 39–48.

[10] T. M. King, D. Santiago, J. Phillips, and P. J. Clarke, “Towards a
bayesian network model for predicting flaky automated tests,” in
QRS-C, 2018, pp. 100–107.

[11] G. Pinto, B. Miranda, S. Dissanayake, M. d’Amorim, C. Treude,
and A. Bertolino, “What is the vocabulary of flaky tests?” in MSR,
2020, pp. 492–502.

[12] R. Verdecchia, E. Cruciani, B. Miranda, and A. Bertolino, “Know
you neighbor: Fast static prediction of test flakiness,” IEEE Access,
vol. 9, pp. 76 119–76 134, 2021.

[13] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Mari-
nov, “DeFlaker: automatically detecting flaky tests,” in ICSE, 2018,
pp. 433–444.

[14] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “iDFlakies: A
framework for detecting and partially classifying flaky tests,” in
ICST, 2019, pp. 312–322.

[15] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “ifixflakies: A
framework for automatically fixing order-dependent flaky tests,”
in ESEC/FSE, 2019, pp. 545–555.

[16] Z. Dong, A. Tiwari, X. L. Yu, and A. Roychoudhury, “Flaky test
detection in android via event order exploration,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2021, pp. 367–378.

[17] J. Palmer, “Test flakiness – methods for identifying and dealing
with flaky tests,” 2019, https://labs.spotify.com/2019/11/18/test-
flakiness-methods-for-identifying-and-dealing-with-flaky-tests/.

[18] J. Micco, “The state of continuous integration testing @google,”
2017, ICST.

[19] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky
tests in android apps,” in ICSME. IEEE, 2018, pp. 534–538.

[20] M. T. Rahman and P. C. Rigby, “The impact of failing, flaky, and
high failure tests on the number of crash reports associated with
firefox builds,” in ESEC/FSE, 2018, p. 857–862.

[21] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical
analysis of flaky tests,” in FSE, 2014, p. 643–653.

[22] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Under-
standing flaky tests: The developer’s perspective,” in ESEC/FSE,
2019, p. 830–840.

[23] A. Alshammari, C. Morris, M. Hilton, and J. Bell, “FlakeFlagger:
Predicting Flakiness Without Rerunning Tests,” in ICSE, 2021, pp.
187–187.

[24] “The state of the octoverse,” 2020, https://octoverse.github.com/.
[25] “fix: Correct failing test with wait-for-expect,” 2021. [Online].

Available: https://github.com/magento/pwa-studio/pull/738
[26] “Selenium tests hang,” 2021. [Online]. Available: https://

github.com/ocadotechnology/rapid-router/issues/830
[27] “Set the signal mask before forking,” 2021. [Online]. Available:

https://github.com/box/ClusterRunner/issues/180
[28] “Test consensus leader gets votes before next block is flaky,”

2021. [Online]. Available: https://github.com/orbs-network/
orbs-network-go/issues/197

[29] “Flaky test failures,” 2021. [Online]. Available: https://
github.com/elastic/beats/issues/1517

[30] “Data races,” 2021. [Online]. Available: https://github.com/
hashicorp/packer/issues/42

https://github.com/Test-Flaky/TSE22
https://github.blog/2020-12-16-reducing-flaky-builds-by-18x/
https://github.blog/2020-12-16-reducing-flaky-builds-by-18x/
https://books.google.com.br/books?id=TyIrywEACAAJ
https://books.google.com.br/books?id=TyIrywEACAAJ
https://octoverse.github.com/
https://github.com/magento/pwa-studio/pull/738
https://github.com/ocadotechnology/rapid-router/issues/830
https://github.com/ocadotechnology/rapid-router/issues/830
https://github.com/box/ClusterRunner/issues/180
https://github.com/orbs-network/orbs-network-go/issues/197
https://github.com/orbs-network/orbs-network-go/issues/197
https://github.com/elastic/beats/issues/1517
https://github.com/elastic/beats/issues/1517
https://github.com/hashicorp/packer/issues/42
https://github.com/hashicorp/packer/issues/42

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

[31] “Flaky test in atom/atom,” 2021. [Online]. Available: https:
//github.com/atom/atom/issues/6274

[32] “Flaky tests on macos,” 2021. [Online]. Available: https:
//github.com/aaugustin/websockets/issues/241

[33] “Support windows,” 2021. [Online]. Available: https:
//github.com/hapipal/hpal/pull/36

[34] “fix: flaky test archivertestcase,” 2021. [Online]. Available:
https://github.com/borgbackup/borg/issues/5196

[35] “use a chan to store sent packets in mock connection,” 2021.
[Online]. Available: https://github.com/lucas-clemente/quic-
go/pull/795

[36] “iphone test is flaky,” 2021. [Online]. Available: https://
github.com/hashicorp/terraform/pull/12397

[37] “Identify correct test crashed during teardown and support
multiple test logs from plugins,” 2021. [Online]. Available:
https://github.com/pytest-dev/pytest-xdist/pull/218

[38] “Test failures in ios test app on actual devices,” 2021. [Online].
Available: https://github.com/thaliproject/jxcore/issues/105

[39] “[tests](fix): Fix flaky test timeout,” 2021. [Online]. Available:
https://github.com/scality/Arsenal/pull/111

[40] “Fix flaky recreateindex test,” 2021. [Online]. Available: https:
//github.com/mitodl/open-discussions/issues/1724

[41] “Fix integration and junit tests,” 2021. [Online]. Available: https:
//github.com/malawski/cloudworkflowsimulator/issues/25

[42] “Fix slow metrics provider tests,” 2021. [Online]. Available: https:
//github.com/FormidableLabs/nodejs-dashboard/issues/80

[43] “flaky test symantec,” 2021. [Online]. Available: https://
github.com/log2timeline/plaso/issues/54

[44] “Flaky test: Rdfspeedit.testrdfspeedregression,” 2021. [Online].
Available: https://github.com/OryxProject/oryx/issues/194

[45] “Make test suite faster and less flaky,” 2021. [Online]. Available:
https://github.com/pyro-ppl/pyro/issues/114

[46] “Fix flaky checkbox end-to-end test,” 2021. [Online]. Available:
https://github.com/uber/baseweb/issues/229

[47] “Fix metrics tool on core-lib/benchmarks/all.ns,” 2021. [Online].
Available: https://github.com/mockito/mockito/pull/87

[48] “Fix 9 in two parts,” 2016. [Online]. Available: https:
//github.com/nigoroll/libvmod-dynamic/pull/11

[49] H. K. (and contributors), “pytest-xdist,”
https://pypi.org/project/pytest-xdist/, 2021.

[50] “pytest: helps you write better programs,”
https://docs.pytest.org/en/stable/, 2021.

[51] J. Candido, L. Melo, and M. d’Amorim, “”test suite parallelization
in open-source projects: A study on its usage and impact”,” in
ASE, 2017, pp. 838–848.

[52] D. Silva, L. Teixeira, and M. d’Amorim, “Shake it! detecting flaky
tests caused by concurrency with shaker,” in ICSME, 2020, pp.
301–311.

[53] A. Romano, Z. Song, S. Grandhi, W. Yang, and W. Wang, “An
empirical analysis of ui-based flaky tests,” in ICSE, 2021, p.
1585–1597.

[54] B. Liskov and L. Shrira, “Promises: Linguistic support for efficient
asynchronous procedure calls in distributed systems,” SIGPLAN
Not., vol. 23, no. 7, p. 260–267, 1988.

[55] “next.clienttest failing,” https : / / github.com /
TheScienceMuseum/collectionsonline/issues/1022, 2021.

[56] “multiple-filters.clienttest failing,” https : / / github.com /
TheScienceMuseum/collectionsonline/issues/1021, 2021.

[57] “Ignored test,” https://github.com/eclipse/xtext-
eclipse/commit/567ba325545cea2ab85319df82e0249f42523613,
2021.

[58] “Server tests flaky in travis,” https://github.com/lucas-
clemente/quic-go/issues/65, 2021.

[59] “Deal with starting/stopping weave,”
https://github.com/weaveworks/scope/pull/867, 2021.

[60] S. Lewis, “Qualitative inquiry and research design: Choosing
among five approaches,” Health promotion practice, vol. 16, no. 4,
pp. 473–475, 2015.

[61] R. Pike, “Go at google,” in OOPSLA, 2012, p. 5–6.
[62] J. Meyerson, “The go programming language,” IEEE Software,

vol. 31, no. 5, pp. 104–104, 2014.
[63] W. Lam, S. Winter, A. Astorga, V. Stodden, and D. Marinov,

“Understanding reproducibility and characteristics of flaky tests
through test reruns in java projects,” in ISSRE, 2020, pp. 403–413.

[64] B. Ray, D. Posnett, P. Devanbu, and V. Filkov, “A large-scale
study of programming languages and code quality in github,”
Communications of the ACM, vol. 60, no. 10, p. 91–100, Sep. 2017.

[65] “https://github.com/covidwatchorg/portal/pull/268,”
https://github.com/covidwatchorg/portal/pull/268, 2021.

[66] H. Sutter and J. Larus, “Software and the concurrency revolution:
Leveraging the full power of multicore processors demands
new tools and new thinking from the software industry.”
Queue, vol. 3, no. 7, p. 54–62, Sep. 2005. [Online]. Available:
https://doi.org/10.1145/1095408.1095421

[67] “Awaitility library,” 2020, http://www.awaitility.org.
[68] “Handle race condition (file deleted after directory scan) that was

causing flaky test,” https://github.com/eobrain/bajel/issues/33,
2021.

[69] T.-H. Chen, M. Nagappan, E. Shihab, and A. E. Hassan, “An
empirical study of dormant bugs,” in MSR, 2014, p. 82–91.

[70] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky
tests in android apps,” in ICSME, 2018.

[71] W. Wang, W. Lam, and T. Xie, An Infrastructure Approach to Improv-
ing Effectiveness of Android UI Testing Tools, 2021, p. 165–176.

[72] A. Vahabzadeh, A. M. Fard, and A. Mesbah, “An empirical study
of bugs in test code,” in ICSME, 2015, p. 101–110.

[73] A. Ahmad, O. Leifler, and K. Sandahl, “Empirical analysis
of practitioners’ perceptions of test flakiness factors,” STVR,
vol. 1, no. 8, p. e1791, 2021. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1791

[74] W. Lam, S. Winter, A. Wei, T. Xie, D. Marinov, and J. Bell, “A large-
scale longitudinal study of flaky tests,” Proc. ACM Program. Lang.,
vol. 4, no. OOPSLA, Nov. 2020.

[75] M. Gruber, S. Lukasczyk, F. Kroiß, and G. Fraser, “An
empirical study of flaky tests in python,” in IEEE International
Conference on Software Testing, 2021. [Online]. Available: https:
//arxiv.org/abs/2101.09077

[76] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “iDFlakies: A
framework for detecting and partially classifying flaky tests,” in
ICST, 2019, pp. 312–322.

[77] A. Gambi, J. Bell, and A. Zeller, “Practical test dependency detec-
tion,” in ICST, 2018, pp. 1–11.

[78] G. Haben, S. Habchi, M. Papadakis, M. Cordy, and Y. L. Traon, “A
replication study on the usability of code vocabulary in predicting
flaky tests,” in MSR, 2021.

[79] M. Fowler, “Continuous integration,”
https://www.martinfowler.com/articles/continuousIntegration.html,
2021.

https://github.com/atom/atom/issues/6274
https://github.com/atom/atom/issues/6274
https://github.com/aaugustin/websockets/issues/241
https://github.com/aaugustin/websockets/issues/241
https://github.com/hapipal/hpal/pull/36
https://github.com/hapipal/hpal/pull/36
https://github.com/borgbackup/borg/issues/5196
https://github.com/lucas-clemente/quic-go/pull/795
https://github.com/lucas-clemente/quic-go/pull/795
https://github.com/hashicorp/terraform/pull/12397
https://github.com/hashicorp/terraform/pull/12397
https://github.com/pytest-dev/pytest-xdist/pull/218
https://github.com/thaliproject/jxcore/issues/105
https://github.com/scality/Arsenal/pull/111
https://github.com/mitodl/open-discussions/issues/1724
https://github.com/mitodl/open-discussions/issues/1724
https://github.com/malawski/cloudworkflowsimulator/issues/25
https://github.com/malawski/cloudworkflowsimulator/issues/25
https://github.com/FormidableLabs/nodejs-dashboard/issues/80
https://github.com/FormidableLabs/nodejs-dashboard/issues/80
https://github.com/log2timeline/plaso/issues/54
https://github.com/log2timeline/plaso/issues/54
https://github.com/OryxProject/oryx/issues/194
https://github.com/pyro-ppl/pyro/issues/114
https://github.com/uber/baseweb/issues/229
https://github.com/mockito/mockito/pull/87
https://github.com/nigoroll/libvmod-dynamic/pull/11
https://github.com/nigoroll/libvmod-dynamic/pull/11
https://github.com/TheScienceMuseum/collectionsonline/issues/1022
https://github.com/TheScienceMuseum/collectionsonline/issues/1022
https://github.com/TheScienceMuseum/collectionsonline/issues/1021
https://github.com/TheScienceMuseum/collectionsonline/issues/1021
https://doi.org/10.1145/1095408.1095421
http://www.awaitility.org
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1791
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1791
https://arxiv.org/abs/2101.09077
https://arxiv.org/abs/2101.09077

	Introduction
	The Anatomy of Flaky Tests
	Root Causes of Test Flakiness
	Fix Strategies of Test Flakiness

	Research Procedure
	Results
	The raw data
	Answering RQ1: Concentration
	Answering RQ2: Similarity
	Root Causes
	Fix Strategies

	Answering RQ3: Cost

	Discussion
	Implications
	Threats to Validity
	Related Work
	Conclusions
	References

