
SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

Are Java Programmers Transitioning to
Multicore?

A Large Scale Study of Java FLOSS

Weslley Torres Gustavo Pinto Benito Fernandes
João Paulo Oliveira Filipe Ximenes Fernando Castor

Informatics Center - Federal University of Pernambuco

October 23, 2011

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

Introduction

Problem

1. In spite of multicore and...

2. many languages providing constructs for concurrent
programming...

3. we have no idea about how developers use these constructs in
practice.

Our Study

1. A study targeting a large-scale FLOSS repository

2. To discover what concurrency mechanisms programmers use.

3. The frequency of use and system evolution along time.

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

Introduction

Problem

1. In spite of multicore and...

2. many languages providing constructs for concurrent
programming...

3. we have no idea about how developers use these constructs in
practice.

Our Study

1. A study targeting a large-scale FLOSS repository

2. To discover what concurrency mechanisms programmers use.

3. The frequency of use and system evolution along time.

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

Introduction

Implications for Research and Practice

1. Researchers
1.1 To design new mechanisms.
1.2 To improve existing ones, based on development practice.

2. Software Developers : Might lead to more efficient use of
existing abstractions

3. It is important to know!

Why Java?

1. Widely used object-oriented programming language.

2. Supports for multi-threading (low level and high level).

3. Programming language with more projects at SourceForge
(46.665 rojects).

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

Introduction

Implications for Research and Practice

1. Researchers
1.1 To design new mechanisms.
1.2 To improve existing ones, based on development practice.

2. Software Developers : Might lead to more efficient use of
existing abstractions

3. It is important to know!

Why Java?

1. Widely used object-oriented programming language.

2. Supports for multi-threading (low level and high level).

3. Programming language with more projects at SourceForge
(46.665 rojects).

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

Research Questions

I Two dimensions: Spatial and Temporal

I RQ1 - How often are the Java concurrency constructs
employed in real applications?

I RQ2 - Are programmers aware about the transition from
singlecore to multicore?

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

RQ1 - Metrics

Metric Category Element
Concurrent Instantiations of BlockingQueue,ConcurrentMap,
collections SynchronousQueue, ConcurrentHashMap,

Synchronized Occurrences of synchronized methods and blocks.

Atomic data Uses of AtomicInteger,
types AtomicLong, and AtomicBoolean

Barriers Uses of CyclicBarrier and CountDownLatch

Locks Instantiations of LockSupport,
ReentrantLock

Others extends Thread/Runnable, implements Runnable
import java.util.concurrent (and its subpackages)

Size Lines of Code

Table: Some Metrics

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

RQ2 - Are programmers aware about the transition from
singlecore to multicore?

We have broken this question into three more:

I RQ2.1 - Are developers employing more concurrent
programming constructs?

I RQ2.2 - Are developers wasting opportunities to use j.u.c.?

I RQ2.3 - Have threads been used to improve concurrency or
parallelism?

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

Intrastructure

I Only projects with some version released after 2004

I Many projects were discarded

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

General information

#Projects (subprojects included) 2.343

#Small concurrent projects 1.300

#Small non-concurrent projects 489

#Medium concurrent projects 635

#Medium non-concurrent projects 32

#Big concurrent projects 199

#Big non-concurrent projects 0

of LoC of the last version of the biggest project 1.702.972

Size on disk (all versions of all projects) 124GB

Table: General information about the projects.

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

RQ1 - How often are the Java concurrency constructs
employed in real applications?

Metrics Median Mean Std. Dev. #Projects

#1 4 14 51 11.2 39.47 119.7 22.56 65.88 189.73 703 535 189

#2 6 24 90 12.6 50.53 152.3 20.07 74.02 188.66 941 586 196

#3 1.5 3 6 2.41 4.8 9.46 2.17 6.07 11.32 520 399 152

#4 2 3 6 2.71 6.38 13.04 3.02 10.3 17.8 596 416 168

#5 1 2 1 1.91 2.86 6.05 1.24 3.60 14.17 6 9 17

Table: Metricts by categories (small/medium/big projects, respectively)

where:

I #1: synchronized blocks

I #2: synchronized methods

I #3: classes extending
Thread

I #4: implementing Runnable

I #5: interfaces extending
Runnable

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

RQ1 - How often are the Java concurrency constructs
employed in real applications?

metrics Median Mean Std. Dev. #Projects

1 2 3 6 3.07 9.05 16.02 2.71 16.16 21.63 39 70 47

2 1 2 4 2.32 7.17 6.77 3.48 17.91 8.70 43 82 53

3 2 2 2 3.80 3.61 2.88 3.83 3.79 2.26 31 42 26

4 2 3 4 3.17 7.12 13.07 4.12 11.17 21.01 86 97 61

5 2 2 3 2.25 6.44 5.8 1.81 26.35 8.07 71 92 60

Table: Metricts by categories (small/medium/big projects, respectively)

where:

I #1: atomic data types

I #2: locks

I #3: futures

I #4: concurrent collections

I #5: executors

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

Some facts

I 49% of the big concurrent projects, 32.4% of the medium
ones, and only 15.5% of the small ones employ
java.util.concurrent

I For synchronized blocks, the percentages are 94.97%,
84.64%, and 54.07%, respectively

I 139 projects define threads but do not use synchronized
I Often worker threads in small (< 10KLoC) projects

I 44 projects employ the java.util.concurrent library but
not the synchronized keyword

I 10% of the analyzed projects employ concurrent collections,
particularly ConcurrentHashMap

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

Some facts

I 49% of the big concurrent projects, 32.4% of the medium
ones, and only 15.5% of the small ones employ
java.util.concurrent

I For synchronized blocks, the percentages are 94.97%,
84.64%, and 54.07%, respectively

I 139 projects define threads but do not use synchronized
I Often worker threads in small (< 10KLoC) projects

I 44 projects employ the java.util.concurrent library but
not the synchronized keyword

I 10% of the analyzed projects employ concurrent collections,
particularly ConcurrentHashMap

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

Some facts

I 49% of the big concurrent projects, 32.4% of the medium
ones, and only 15.5% of the small ones employ
java.util.concurrent

I For synchronized blocks, the percentages are 94.97%,
84.64%, and 54.07%, respectively

I 139 projects define threads but do not use synchronized
I Often worker threads in small (< 10KLoC) projects

I 44 projects employ the java.util.concurrent library but
not the synchronized keyword

I 10% of the analyzed projects employ concurrent collections,
particularly ConcurrentHashMap

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

RQ2.1 – Usage of the synchronized keyword

Per 100KLoC

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

RQ2.1 – Usage of atomic data types

Per 100KLoC

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

RQ2.1 – Usage of concurrent collections

Per 100KLoC – Mainly ConcurrentHashMap

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

RQ2.1 – Usage of executors

Per 100KLoC – Mainly thread pools

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

Are developers wasting opportunities to use j.u.c.?

Methodology

1. Randomly chosen 100 projects out of all the 1830 concurrent
projects.

2. Randomly collected 1–3 examples of the use of the
synchronized keyword in these projects.

3. Analyzed 276 examples of synchronized usage.
I Some systems had fewer than 3 occurrences of synchronized.

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

Are developers wasting opportunities to use j.u.c.?

Results

1. We found 28 cases where the use of synchronized could be
avoided in 25 projects.

2. 40% of these projects already use j.u.c. somehow.

3. In most cases, the synchronized keyword cannot be removed
because of the complexity of the operations.

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

RQ2.3: Concurrency vs. Parallelism

I Still much work to do.

I Existing systems seem to be getting more concurrent
I But not much...

I Some (e.g., Lucene) are also getting more parallel

I How can we know for sure?

I Suggestions?

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

RQ2.3: Concurrency vs. Parallelism

I Still much work to do.

I Existing systems seem to be getting more concurrent
I But not much...

I Some (e.g., Lucene) are also getting more parallel

I How can we know for sure?

I Suggestions?

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

RQ2.3: Concurrency vs. Parallelism

I Still much work to do.

I Existing systems seem to be getting more concurrent
I But not much...

I Some (e.g., Lucene) are also getting more parallel

I How can we know for sure?

I Suggestions?

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

Future Work

I Threads for Concurrency vs. Threads for Parallelism

I Atomic Data Types for actual variables instead of specific
pieces of code.

I To investigate the organization of concurrency code in the
analyzed projects.

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

Future Work

I Threads for Concurrency vs. Threads for Parallelism

I Atomic Data Types for actual variables instead of specific
pieces of code.

I To investigate the organization of concurrency code in the
analyzed projects.

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

Future Work

I Threads for Concurrency vs. Threads for Parallelism

I Atomic Data Types for actual variables instead of specific
pieces of code.

I To investigate the organization of concurrency code in the
analyzed projects.

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

Thank you

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

Why the Web and not a version control system?

I SourceForge’s SVN repositories do not have a fixed structure

I It is difficult to know whether a given version is a release or a
development version

I Difficult to know what is an actual version

I SourceForge projects employ more than one kind of repository

I On the other hand, SourceForge’s Web site organizes things
somewhat

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

Metric Category Element
Thread methods Calls to interrupt, join, run, setDaemon,

sleep, yield, and getContextLoader

Object methods Calls to wait, notify, notifyAll

Concurrent Instantiations of BlockingQueue,
collections ArrayBlockingQueue, ConcurrentMap,

LinkedBlockingDeque, LinkedBlockingQueue,
LinkedTransferQueue, PriorityBlockingQueue,
SynchronousQueue, ConcurrentHashMap,
DelayQueue, ConcurrentSkipListMap

Synchronized Occurrences of synchronized methods and
keyword blocks.

Executors Uses of ExecutorService, ForkJoinPool,
Executor, Executors, ScheduledExecutorService,
AbstractExecutorService, ThreadPoolExecutor,
ScheduledThreadPoolExecutor

Table: List of metrics

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

Metric Category Element
Atomic data Uses of AtomicInteger,
types AtomicLong, and AtomicBoolean

Barriers Uses of CyclicBarrier and CountDownLatch

Futures Uses of Future, Response, RunnableFuture
RunnableScheduledFuture, ScheduledFuture,
FutureTask, ForkJoinTask, RecursiveAction,
RecursiveTask, SwingWorker

Locks Instantiations of LockSupport,
ReentrantLock, ReentrantReadWriteLock,
ReentrantReadWriteLockReadLock,
ReentrantReadWriteLockWriteLock

Others extends Thread/Runnable, implements Runnable, volatile
modifier, import java.util.concurrent (and its
subpackages)

Size L of Code

Table: List of metrics

SPLASH’2011 Workshop on Transitioning to Multicore. Portland, USA, October 23nd 2011.

RQ1 - How often are the Java concurrency constructs
employed in real applications? ALL PROJECTS

metrics Median Mean Std. Dev. #Projects
1 108.77 223.81 362.21 1634
2 12.23 25.63 39.08 924
3 2.97 8.83 12.41 40
4 14.26 32.52 52.42 1031
5 31.17 91.85 195.61 470

Table: Metricts per 100KLOC

where:

I #1: synchronized

keywords

I #2: extends thread

I #3: extends runnable

I #4: implements runnable

I #5: use of j.u.c.

	Introduction
	Research Questions
	Intrastructure
	Results
	Future Work

