
A Refactoring Approach to Improve
Energy Consumption of Parallel

Software Systems

1

Gustavo Pinto

Ph.D. Defense
Informatics Center

Federal University of Pernambuco

Recife, February/2015

2

Generated from 77,317 words

Motivation (1/2)

• First, energy consumption is a concern for
unwired devices and also for data centers.

• Second, there is a large body of work in
hardware/architecture, OS, runtime systems.

• However, little is known about the application
level.

3

Motivation (2/2)

4

• First, multicore CPUs are ubiquitous

• Second, performance of the existing parallel software
is reasonably well-understood

• However, little is known about energy behaviors of
multi-threaded programs on the application and
programming language level

5

CP

CP: Concurrent Programming
SEC: Software Energy Consumption
MSR: Mining Software Repositories

6

CP

CP: Concurrent Programming
SEC: Software Energy Consumption
MSR: Mining Software Repositories

[TMC’11]

[JSS’15a]*

[SEPS’14]

[OOPSLA’14]

* Under submission

7

CP SEC

CP: Concurrent Programming
SEC: Software Energy Consumption
MSR: Mining Software Repositories

[TMC’11]

[JSS’15a]*

[SEPS’14]

* Under submission

[OOPSLA’14]

8

CP SEC

CP: Concurrent Programming
SEC: Software Energy Consumption
MSR: Mining Software Repositories

[FASE’15]
[JSS’15b]

[TMC’11]

[JSS’15a]*

[SEPS’14]

[OOPSLA’15]**

* Under submission

[OOPSLA’14]

[GREENS’15]

9

CP SEC

MSR

CP: Concurrent Programming
SEC: Software Energy Consumption
MSR: Mining Software Repositories

[FASE’15]
[JSS’15b]

[TMC’11]

[JSS’15a]*

[SEPS’14]

[OOPSLA’14]

[OOPSLA’15]**

* Under submission
** Will be submitted

[GREENS’15]

10

CP SEC

MSR

CP: Concurrent Programming
SEC: Software Energy Consumption
MSR: Mining Software Repositories

[FASE’15]
[JSS’15b]

[MSR’14]

[TMC’11]

[JSS’15a]*

[SEPS’14]

[OOPSLA’14]

[OOPSLA’15]**

* Under submission

[OSS’14]

[WRT’13]
[MSR’15]*

** Will be submitted

[GREENS’15]

11

CP SEC

MSR

CP: Concurrent Programming
SEC: Software Energy Consumption
MSR: Mining Software Repositories

[FASE’15]
[JSS’15b]

[MSR’14]

[TMC’11]

[JSS’15a]*

[OSS’14]

[SEPS’14]

[WRT’13]

[OOPSLA’14]

[OOPSLA’15]**

This thesis!

* Under submission

[MSR’15]*
** Will be submitted

[GREENS’15]

The Problem

• The lack of knowledge

• The lack of tools

12

The Problem

• The lack of knowledge

• The lack of tools

13

I have no idea on how to improve
this parallel code to be more

energy efficient :(

The Problem

• The lack of knowledge

• The lack of tools

14

Is there any tool that can help us
to refactor our system to consume

less energy?

15

The Contributions
1. To understand how software developers are

dealing with energy consumption issues;

2. To characterize the energy-consumption
behavior of

1. Thread-safe collections

2. Thread management techniques

3. To derive a refactoring to (1) identify and (2)
refactor one energy-consumption anti-pattern;

16

The Contributions
1. To understand how software developers are

dealing with energy consumption issues;

2. To characterize the energy-consumption
behavior of

1. Thread-safe collections

2. Thread management techniques

3. To derive a refactoring to (1) identify and (2)
refactor one energy-consumption anti-pattern;

2M+ Users

5M+ Questions

10M+ Answers

50GB+ of data

“The most used Q&A website in the world”

18

2M+ Users

5M+ Questions

10M+ Answers

50GB+ of data

“The most used Q&A website in the world”

19

5M Questions Manual Filter

Final Data

Automatic Filter

20

5M Questions Manual Filter

Final Data

Automatic Filter

615 Questions
1,197 Answers

21

5M Questions Automatic Filter Manual Filter

Final Data
from 2008 to 2013

325 Questions
558 Answers

Base Group

Characteristics

22

23

1/4 of questions are
from mobile dev.

No obvious “energy
expert”

85% of Q. have A.
(45% are answered

successfully)

Characteristics

Problems

24

• Measurements
(59/97 — Q/A)

• General
Knowledge
(40/84 — Q/A)

• Code design
(36/133 — Q/A)

• Context-specific
(83/110 — Q/A)

• Noise (107/134 — Q/A)

25

“I want to measure the energy consumption of my own
application (which I can modify) [...] on Windows CE 5.0 and

Windows Mobile 5/6. Is there some kind of API for this?”

• Measurements
(59/97 — Q/A)

• General
Knowledge
(40/84 — Q/A)

• Code design
(36/133 — Q/A)

• Context-specific
(83/110 — Q/A)

• Noise (107/134 — Q/A)

26

“Are there any s/w high level design considerations
[...] to make the code as power efficient as possible?”

• Measurements
(59/97 — Q/A)

• General
Knowledge
(40/84 — Q/A)

• Code design
(36/133 — Q/A)

• Context-specific
(83/110 — Q/A)

• Noise (107/134 — Q/A)

27

• Measurements
(59/97 — Q/A)

• General
Knowledge
(40/84 — Q/A)

• Code design
(36/133 — Q/A)

• Context-specific
(83/110 — Q/A)

• Noise (107/134 —
Q/A)

— Highest popularity
— Highest A per Q ratio
— Highest success rate

Problems

Causes

28

• Unnecessary
resource usage
(49 occurrences)

• Fault GPS behavior
(42 occurrences)

• Background
activities (40
occurrences)

• Excessive
synchronization
(32 occurrences)

• Background
wallpapers (17
occurrences)

• Advertisement (11
occurrences)

29

• Unnecessary
resource usage
(49 occurrences)

• Fault GPS behavior
(42 occurrences)

• Background
activities (40
occurrences)

• Excessive
synchronization
(32 occurrences)

• Background
wallpapers (17
occurrences)

• Advertisement (11
occurrences)

“to have a background application that monitors device usage,
identifies unused/idle resources, and acts appropriately”

30

• Unnecessary
resource usage
(49 occurrences)

• Fault GPS behavior
(42 occurrences)

• Background
activities (40
occurrences)

• Excessive
synchronization
(32 occurrences)

• Background
wallpapers (17
occurrences)

• Advertisement (11
occurrences)

“When there are bugs that keep the GPS turned on
too long they go to the top of the list to get fixed”

Solutions

31

• Keep IO to a
minimum (29
occurrences)

• Bulk operations
(24 occurrences)

• Avoid polling (17
occurrences)

• Hardware
Coordination (11
occurrences)

• Concurrent
Programming (9
occurrences)

• Race to idle (7
occurrences)

32

• Keep IO to a
minimum (29
occurrences)

• Bulk operations
(24 occurrences)

• Avoid polling (17
occurrences)

• Hardware
Coordination (11
occurrences)

• Concurrent
Programming (9
occurrences)

• Race to idle (7
occurrences)

“do not flood the output stream with null values”

33

• Keep IO to a
minimum (29
occurrences)

• Bulk operations
(24 occurrences)

• Avoid polling (17
occurrences)

• Hardware
Coordination (11
occurrences)

• Concurrent
Programming (9
occurrences)

• Race to idle (7
occurrences)

“Don’t transfer say 1 file, and then wait for a bit to do another
transfer. Instead, transfer right after the other.”

Do researchers
agree?

34

• Keep IO to a
minimum (29
occurrences)

• Bulk operations
(24 occurrences)

• Avoid polling (17
occurrences)

• Hardware
Coordination (11
occurrences)

• Concurrent
Programming (9
occurrences)

• Race to idle (7
occurrences)

Do researchers
agree?

35

• Keep IO to a
minimum (29
occurrences)

• Bulk operations
(24 occurrences)

• Avoid polling (17
occurrences)

• Hardware
Coordination (11
occurrences)

• Concurrent
Programming (9
occurrences)

• Race to idle (7
occurrences)

36

The Goal
1. To understand how software developers are

dealing with energy consumption issues;

2. To characterize the energy-consumption
behavior of

1. Thread-safe collections

2. Thread management techniques

3. To derive a refactoring to (1) identify and (2)
refactor one energy-consumption anti-pattern;

37

The Goal
1. To understand how software developers are

dealing with energy consumption issues;

2. To characterize the energy-consumption
behavior of

1. Thread-safe collections

2. Thread management techniques

3. To derive a refactoring to (1) identify and (2)
refactor one energy-consumption anti-pattern;

16 Collections

38

List

ArrayList

Vector

Collections.syncList()

CopyOnWriteArrayList

Set

LinkedHashSet

Collections.syncSet()

CopyOnWriteArraySet

ConcurrentSkipListSet

ConcurrentHashSet

ConcurrentHashSetV8

Map

LinkedHashMap

Hashtable

Collections.syncMap()

ConcurrentSkipListMap

ConcurrentHashMap

ConcurrentHashMapV8

16 Collections

39

List

ArrayList

Vector

Collections.syncList()

CopyOnWriteArrayList

Set

LinkedHashSet

Collections.syncSet()

CopyOnWriteArraySet

ConcurrentSkipListSet

ConcurrentHashSet

ConcurrentHashSetV8

Map

LinkedHashMap

Hashtable

Collections.syncMap()

ConcurrentSkipListMap

ConcurrentHashMap

ConcurrentHashMapV8

Non thread-safe
Thread-safe

16 Collections

40

List

ArrayList

Vector

Collections.syncList()

CopyOnWriteArrayList

Set

LinkedHashSet

Collections.syncSet()

CopyOnWriteArraySet

ConcurrentSkipListSet

ConcurrentHashSet

ConcurrentHashSetV8

Map

LinkedHashMap

Hashtable

Collections.syncMap()

ConcurrentSkipListMap

ConcurrentHashMap

ConcurrentHashMapV8

x 3 Operations
Traversal Insertion Removal

Experimental Environment

System#1: A 2×16-core AMD CPUs, running
Debian, 2.4 GHz, 64GB of memory, JDK
version 1.7.0 11, build 21.

41

System#2: A 2×8-core (32-cores w/ hyper-
threading) Intel CPU,running Debian,
2.60GHz, with 64GB of memory, JDK version
1.7.0 71, build 14.

Experimental Environment

System#1: A 2×16-core AMD CPUs, running
Debian, 2.4 GHz, 64GB of memory, JDK
version 1.7.0 11, build 21.

42

System#2: A 2×8-core (32-cores w/ hyper-
threading) Intel CPU,running Debian,
2.60GHz, with 64GB of memory, JDK version
1.7.0 71, build 14.

Experimental Environment

43

System#1: A 2×16-core AMD CPUs, running
Debian, 2.4 GHz, 64GB of memory, JDK
version 1.7.0 11, build 21.

Experimental Environment

A 2×16-core AMD CPUs, running Debian
Linux, 64GB of DDR3 1600 memory, and
JDK version 1.7.0 11, build 21.

44

Experimental Environment

45
http://kliu20.github.io/jRAPL/

System#2: A 2×8-core (32-cores w/ hyper-
threading) Intel CPU,running Debian,
2.60GHz, with 64GB of memory, JDK version
1.7.0 71, build 14.

http://kliu20.github.io/jRAPL/

Lists

46

Lists

47

Lists

48

Lists

49

COW: -46x COW: +152x

Maps

50

Maps

51

Maps

52

Do Maps Scale?

53

Do Maps Scale?

54

Do Maps Scale?

55

GAP

GAP

Do Maps Scale?

56

If you are in doubt, go for CHMV8!

The Goal
1. To understand how software developers are

dealing with energy consumption issues;

2. To characterize the energy-consumption
behavior of

1. Thread-safe collections

2. Thread management techniques

3. To derive a refactoring to (1) identify and (2)
refactor one energy-consumption anti-pattern;

57

The Goal
1. To understand how software developers are

dealing with energy consumption issues;

2. To characterize the energy-consumption
behavior of

1. Thread-safe collections

2. Thread management techniques

3. To derive a refactoring to (1) identify and (2)
refactor one energy-consumption anti-pattern;

58

59

• Explicit threading (the Thread-style): Using the
java.lang.Thread class

• Thread pooling (the Executor-style): Using the
java.util.concurrent.Executor* framework

• Working Stealing (the ForkJoin-style): Using the
java.util.concurrent.ForkJoin* framework

Thread management
constructs

60

• Embarrassingly parallel: spectralnorm, sunflow,
n-queens

• Leaning parallel: xalan, knucleotide, tomcat

• Leaning serial: mandelbrot, largestImage

• Embarrassingly serial: h2

Benchmarks

61

• Embarrassingly parallel: spectralnorm, sunflow,
n-queens

• Leaning parallel: xalan, knucleotide, tomcat

• Leaning serial: mandelbrot, largestImage

• Embarrassingly serial: h2

Benchmarks

Micro-benchmarks

DaCapo benchmarks

Experimental Environment

A 2×16-core AMD CPUs, running Debian, 2.4
GHz, 64GB of memory, JDK version 1.7.0 11,
build 21.

62

Energy Consumption When Varying the
Number of Threads

63

64

The Λ Curve

65

The Λ Curve

66

The Λ Curve

67

More cores idle
Frequency at a
lower level

The Λ Curve

68

More cores idle
Frequency at a
lower level

More threads used,
performance increase
The greater the ratio
between speedup and
power, the steeper the \

The Λ Curve

Which programming style should I use?

69

Overpopulating Cores with Threads

70

Overpopulating Cores with Threads

71

Faster ≠ Greener

72

Data Locality

73

Fork/Join

Copy

Data Locality

74

Fork/Join

Copy

±10% of energy savings!

Copying vs Sharing

75

Copying

Sharing

Copying vs Sharing

76

Copying

Sharing
±15% of energy savings!

Copying vs Sharing

77

Copying

Sharing
±15% of energy savings!

The Goal
1. To understand how software developers are

dealing with energy consumption issues;

2. To characterize the energy-consumption
behavior of

1. Thread-safe collections

2. Thread management techniques

3. To derive a refactoring to (1) identify and (2)
refactor one energy-consumption anti-pattern;

78

The Goal
1. To understand how software developers are

dealing with energy consumption issues;

2. To characterize the energy-consumption
behavior of

1. Thread-safe collections

2. Thread management techniques

3. To derive a refactoring to (1) identify and (2)
refactor one energy-consumption anti-pattern;

79

Copying vs Sharing

80

Copying

Sharing

Copying vs Sharing

81

Copying

Sharing

Solution

82

1. Add field variable

2. Add new constructor and
update its usage

3. Modify threshold
management policy

4. Remove copy statements

Solution

83

1. Add field variable

2. Add new constructor and
update its usage

3. Modify threshold
management policy

4. Remove copy statements

Solution

84

1. Add field variable

2. Add new constructor and
update its usage

3. Modify threshold
management policy

4. Remove copy statements

Solution

85

1. Add field variable

2. Add new constructor and
update its usage

3. Modify threshold
management policy

4. Remove copy statements

86

“GitHub is the largest code host on the planet with over 19.9 mi repositories.”
https://github.com/features

4Mi+ Users

19Mi+ Repositories

https://github.com/features

87

4Mi+ Users

19Mi+ Repositories

“GitHub is the largest code host on the planet with over 19.9 mi repositories.”
https://github.com/features

https://github.com/features

88

4Mi+ Users

19Mi+ Repositories

“GitHub is the largest code host on the planet with over 19.9 mi repositories.”
https://github.com/features

https://github.com/features

Experimental Environment

89

A 2×8-core (32-cores w/ hyper-threading) Intel
CPU,running Debian, 2.60GHz, with 64GB of
memory, JDK version 1.7.0 71, build 14.

Results

90

Results

91

9/15
crossed the
10% energy

saving!

Patches

92

Patches

93

7/9 of
projects

that replied
have

accepted

Patches

94

7/9 of
projects

that replied
have

accepted

Patches

95

7/9 of
projects

that replied
have

accepted

The Goal
1. To understand how software developers are

dealing with energy consumption issues;

2. To characterize the energy-consumption
behavior of

1. Thread-safe collections

2. Thread management techniques

3. To derive a refactoring to (1) identify and (2)
refactor one energy-consumption anti-pattern;

96

97

Conclusions
There is a “brave new world” for Refactoring
for Energy Efficiency.

98

Conclusions
However, the questions is: When to refactor?

99

Conclusions
However, the questions is: When to refactor?

Threads

ForkJoin

100

Conclusions
However, the questions is: When to refactor?

Threads

ForkJoin

101

Conclusions
However, the questions is: When to refactor?

Non Thread-Safe
Data Structures

Thread-Safe
Data Structures

102

Conclusions
However, the questions is: When to refactor?

Non Thread-Safe
Data Structures

Thread-Safe
Data Structures

103

Conclusions
• This thesis just scratched the surface

• More research is indeed needed

• We welcome you to join us!

104

Conclusions
• This thesis just scratched the surface

• More research is indeed needed

• We welcome you to join us!

105

Conclusions
• This thesis just scratched the surface

• More research is indeed needed

• We welcome you to join us!

106

Conclusions
• This thesis just scratched the surface

• More research is indeed needed

• We welcome you to join us!

A Refactoring Approach to Improve
Energy Consumption of Parallel

Software Systems

107

Gustavo Pinto

Ph.D. Defense
Informatics Center

Federal University of Pernambuco

Recife, February/2015

