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Motivation (1/2)

• First, energy consumption is a concern for 
unwired devices and also for data centers. 

• Second, there is a large body of work in 
hardware/architecture, OS, runtime systems. 

• However, little is known about the application 
level.
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Motivation (2/2)
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• First, multicore CPUs are ubiquitous 

• Second, performance of the existing parallel software 
is reasonably well-understood  

• However, little is known about energy behaviors of 
multi-threaded programs on the application and 
programming language level
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I have no idea on how to improve 
this parallel code to be more 

energy efficient :(
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Is there any tool that can help us 
to refactor our system to consume 

less energy?
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The Contributions
1. To understand how software developers are 

dealing with energy consumption issues; 

2. To characterize the energy-consumption 
behavior of 

1. Thread-safe collections 

2. Thread management techniques 

3. To derive a refactoring to (1) identify and (2) 
refactor one energy-consumption anti-pattern;
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5M Questions Automatic Filter Manual Filter

Final Data
from 2008 to 2013

325 Questions
558 Answers

Base Group
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1/4 of questions are 
from mobile dev.

No obvious “energy 
expert”

85% of Q. have A. 
(45% are answered 

successfully)

Characteristics



Problems
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• Measurements 
(59/97 — Q/A) 

• General 
Knowledge  
(40/84 — Q/A) 

• Code design 
(36/133 — Q/A)

• Context-specific 
(83/110 — Q/A) 

• Noise (107/134 — Q/A)
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“I want to measure the energy consumption of my own 
application (which I can modify) [...] on Windows CE 5.0 and 

Windows Mobile 5/6. Is there some kind of API for this?”
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• Measurements 
(59/97 — Q/A) 

• General 
Knowledge  
(40/84 — Q/A) 

• Code design 
(36/133 — Q/A)

• Context-specific 
(83/110 — Q/A) 

• Noise (107/134 — 
Q/A)

— Highest popularity 
— Highest A per Q ratio 
— Highest success rate

Problems
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• Unnecessary 
resource usage 
(49 occurrences) 

• Fault GPS behavior 
(42 occurrences) 

• Background 
activities (40 
occurrences)

• Excessive 
synchronization 
(32 occurrences) 

• Background 
wallpapers (17 
occurrences) 

• Advertisement (11 
occurrences)
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“to have a background application that monitors device usage, 
identifies unused/idle resources, and acts appropriately”
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• Unnecessary 
resource usage 
(49 occurrences) 

• Fault GPS behavior 
(42 occurrences) 

• Background 
activities (40 
occurrences)

• Excessive 
synchronization 
(32 occurrences) 

• Background 
wallpapers (17 
occurrences) 

• Advertisement (11 
occurrences)

“When there are bugs that keep the GPS turned on 
too long they go to the top of the list to get fixed”
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minimum (29 
occurrences) 

• Bulk operations 
(24 occurrences) 

• Avoid polling (17 
occurrences)

• Hardware 
Coordination (11 
occurrences) 

• Concurrent 
Programming (9 
occurrences) 

• Race to idle (7 
occurrences)
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• Keep IO to a 
minimum (29 
occurrences) 

• Bulk operations 
(24 occurrences) 

• Avoid polling (17 
occurrences)

• Hardware 
Coordination (11 
occurrences) 

• Concurrent 
Programming (9 
occurrences) 

• Race to idle (7 
occurrences)

“Don’t transfer say 1 file, and then wait for a bit to do another 
transfer. Instead, transfer right after the other.”
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The Goal
1. To understand how software developers are 

dealing with energy consumption issues; 

2. To characterize the energy-consumption 
behavior of 

1. Thread-safe collections 

2. Thread management techniques 

3. To derive a refactoring to (1) identify and (2) 
refactor one energy-consumption anti-pattern;
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ArrayList

Vector
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x 3 Operations
Traversal Insertion Removal



Experimental Environment

System#1: A 2×16-core AMD CPUs, running 
Debian, 2.4 GHz, 64GB of memory, JDK 
version 1.7.0 11, build 21.
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System#2: A 2×8-core (32-cores w/ hyper-
threading) Intel CPU,running Debian, 
2.60GHz, with 64GB of memory, JDK version 
1.7.0 71, build 14.
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System#1: A 2×16-core AMD CPUs, running 
Debian, 2.4 GHz, 64GB of memory, JDK 
version 1.7.0 11, build 21.



Experimental Environment

A 2×16-core AMD CPUs, running Debian 
Linux, 64GB of DDR3 1600 memory, and 
JDK version 1.7.0 11, build 21.
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Experimental Environment

45
http://kliu20.github.io/jRAPL/

System#2: A 2×8-core (32-cores w/ hyper-
threading) Intel CPU,running Debian, 
2.60GHz, with 64GB of memory, JDK version 
1.7.0 71, build 14.

http://kliu20.github.io/jRAPL/
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COW: -46x COW: +152x
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Do Maps Scale?
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Do Maps Scale?
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GAP

GAP



Do Maps Scale?
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If you are in doubt, go for CHMV8!
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refactor one energy-consumption anti-pattern;

57



The Goal
1. To understand how software developers are 

dealing with energy consumption issues; 

2. To characterize the energy-consumption 
behavior of 

1. Thread-safe collections 

2. Thread management techniques 

3. To derive a refactoring to (1) identify and (2) 
refactor one energy-consumption anti-pattern;

58



59

• Explicit threading (the Thread-style): Using the 
java.lang.Thread class

• Thread pooling (the Executor-style): Using the 
java.util.concurrent.Executor* framework

• Working Stealing (the ForkJoin-style): Using the 
java.util.concurrent.ForkJoin* framework

Thread management 
constructs
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• Embarrassingly parallel: spectralnorm, sunflow, 
n-queens

• Leaning parallel: xalan, knucleotide, tomcat

• Leaning serial: mandelbrot, largestImage

• Embarrassingly serial: h2

Benchmarks
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• Embarrassingly parallel: spectralnorm, sunflow, 
n-queens

• Leaning parallel: xalan, knucleotide, tomcat

• Leaning serial: mandelbrot, largestImage

• Embarrassingly serial: h2

Benchmarks

Micro-benchmarks

DaCapo benchmarks



Experimental Environment

A 2×16-core AMD CPUs, running Debian, 2.4 
GHz, 64GB of memory, JDK version 1.7.0 11, 
build 21.
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Energy Consumption When Varying the 
Number of Threads
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The Λ Curve
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More cores idle
Frequency at a 
lower level

The Λ Curve
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More cores idle
Frequency at a 
lower level

More threads used, 
performance increase
The greater the ratio 
between speedup and 
power, the steeper the \

The Λ Curve



Which programming style should I use?
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Overpopulating Cores with Threads
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Overpopulating Cores with Threads
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Faster ≠ Greener
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Fork/Join

Copy

±10% of energy savings!
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±15% of energy savings!
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Copying
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1. Add field variable 

2. Add new constructor and 
update its usage 

3. Modify threshold 
management policy 

4. Remove copy statements
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A 2×8-core (32-cores w/ hyper-threading) Intel 
CPU,running Debian, 2.60GHz, with 64GB of 
memory, JDK version 1.7.0 71, build 14.
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9/15 
crossed the 
10% energy 

saving! 
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The Goal
1. To understand how software developers are 

dealing with energy consumption issues; 

2. To characterize the energy-consumption 
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1. Thread-safe collections 

2. Thread management techniques 

3. To derive a refactoring to (1) identify and (2) 
refactor one energy-consumption anti-pattern;
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Conclusions
There is a “brave new world” for Refactoring 
for Energy Efficiency.
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