
Refactoring Multicore Applications Towards Energy Efficiency

Gustavo Pinto
Informatics Center

Federal University of Pernambuco
Recife, PE, Brazil
ghlp@cin.ufpe.br

Abstract
Great strides have been made to increase the energy efficiency of
hardware, data center facilities, and network infrastructure. How-
ever, in any computer system, it is software that directs much
of the activity of the hardware. Moreover, multicore processors
have become ubiquitous, mainly because their multiple benefits,
especially enhanced performance for multi-threaded and compute-
intensive applications. Nonetheless, there are few studies address-
ing the topic of restructuring multicore applications to consume less
energy and even fewer that leverage developer expertise to achieve
that goal. In this thesis we present a brief background study for
refactoring multicore applications in order to improve both perfor-
mance and energy consumption. The idea consists in proposing a
catalog of refactorings targeting some languages of the JVM plat-
form.

Categories and Subject Descriptors D.2.7 [Software Engineer-
ing]: Restructuring, reverse engineering, and reengineering; D.1.3
[Programming Techniques]: Concurrent Programming, Parallel
Programming

Keywords Refactoring, Concurrent/Parallel Programming, En-
ergy Consumption

1. Motivation
In spite of advances in many areas, IT energy consumption keeps
rising steeply [1], which indicates that rising demand is outpacing
efficiency improvement. Nonetheless, for many years, research that
connects computing and energy efficiency has concentrated on the
hardware layer. These studies are motivated by the assumption that
only hardware dissipates power, not software. However, there are
studies that show that this assumption does not capture the whole
picture [2, 8]. That would be analogous to postulating that only
automobiles are responsible for burning gasoline, not the people
who drive them and the way they are used. In any computer system,
it is software that directs much of the activity of the hardware.
Consequently, software can have a substantial impact on power
consumption.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPLASH ’13, October 26–31, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-1995-9/13/10.
http://dx.doi.org/10.1145/2508075.2514880

Software solutions for improving energy efficiency of computer
systems can work at different levels, ranging from machine code
level to end-user applications. Notwithstanding, concerns about en-
ergy usage were left for compiler writers, operating system de-
signers and hardware engineers. Nonetheless, energy efficiency for
higher layers of the software stack, in particular at the applica-
tion level, is a subject that has been the target of only few stud-
ies [3, 9, 13].

Measuring the energy consumption of high level applications
and understanding where the energy usage lies provides new op-
portunities for energy savings. In order to understand the complex-
ities of this approach, we specifically look at multi-threaded appli-
cations, since multicore processors have become ubiquitous. The
performance of the existing constructs for concurrenty1 execution
is reasonably well-understood [10, 14], but little is known about
its energy efficiency. Furthermore, since concurrent/parallel pro-
gramming enables programmers to run their applications faster, a
common belief is that this application will also consume less en-
ergy [4]. Nonetheless, some researchers [7, 12] have shown that it
is not necessarily true. This contradiction poses a challenge, creat-
ing the need of new research with deeper analysis.

In order to reduce the energy consumed, many communities
can benefit from the results of this work: (i) large corporations
which spend too much money on energy consumption derived
from software applications; (ii) tool vendors could also benefit,
because they can increase their products’ value by implementing
the refactorings described in this work; and (iii) indirectly, every
software user could be benefit, since their favorite applications will
be able to run faster, resulting in an overall decrease of energy,
besides showing a better user-experience.

2. Problem
Considering the great number of concurrent applications currently
in use, existing software systems should be refactored to consumes
less energy. Hitherto, however, there are only few studies address-
ing the topic of restructuring existing concurrent high level appli-
cations to consume less energy [4], and even fewer that leverage
developer expertise to achieve that goal. Fortunately, there is op-
portunity for substantial reductions in the energy consumption of
existing applications.

Thus, the overall aim of this study is twofold: (i) To better un-
derstand the relationship between concurrent programming and en-
ergy consumption, and (ii) to derive a refactoring catalog of energy
code smells for concurrent software. The first task is currently on
development and preliminary results can be found in [7]. The gen-
eral conclusion we can draw from it is that the trade-off between

1 Throughout the paper, we often employ the terms “concurrent” and “par-
allel”. Since the Java language does not have specific constructs for each
abstraction, we use these terms interchangeably.



performance and energy consumption in multicore applications is
not obvious, besides be very difficult to generalize. However, more
experiments are planned to be conducted. The results of these ex-
periments will be used as an input for a second study. Then, derive
a catalog is currently the most important task and it presents the
exact problem that the author will address.

The knowledge gained from these experiments will then be ap-
plied in the form of guidelines to programmers, in order to educate
application programmers to safely restructure their applications to
both improve performance and energy consumption.

2.1 Refactoring for Multicore and Energy Efficiency:
Opportunities and Challenges

Refactoring an application to use concurrent constructs with the
goal of improving performance does not necessarily imply on en-
ergy savings, even if there is a reduction in the execution time of
the application [12]. Using the Java language as an example, pro-
grammers have at their disposal numerous constructs to create and
manage concurrent/parallel applications.

Nevertheless, each one of them has its own advantages and dis-
advantages. For instance, the Thread class is the primary, and the
simplest, construct to create a new thread [11]. If a programmer
chooses to use these constructs, it will be necessary to worry about
a number of tasks, such as (i) to manage thread creation and termi-
nation, and related operations; (ii) to choose the number of threads
that should be initialized, which can vary with the number of avail-
able CPUs; (iii) to decide at what moment they should be initial-
ized; (iv) to implement sophisticated mechanisms to reuse threads;
and (v) to control access shared resources. As a consequence of
having perform all the tasks, programmers often misuse concurrent
constructs, which may result in wast of energy resources, and/or
deterioration in the application’s performance (i.e. code runs se-
quentially instead of concurrently [6]).

On the other hand, developers could choose enhanced threading
constructs, such as those provided by the java.util.concurrent (j.u.c)
library, available since version 1.5 of the language. Using high-
level constructs instead of low-level threads has many benefits: not
only are they less error-prone, but they also have better performance
in some situations, at the expense of being less general. Moreover,
recently was released the new version (1.7) of the j.u.c. library, with
some improvements and new concurrent constructs, such as the
ForkJoin framework [5]. Furthermore, the Java Virtual Machine
also offer others concurrent-friendly programming languages, such
as Scala. The Scala language is a highly productive programing
language combining functional and object-oriented programming.
It incorporates ground-breaking features supporting asynchronous
programming.

To the best of our knowledge, there is no work in the litera-
ture that assesses the energy efficiency of the concurrent/parallel
constructs of the Java Virtual Machine platform, considering more
than one language. In addiction, to the best of our knowledge, there
is an absence of any refactoring cookbook that supports develop-
ers in using different constructs, based on the performance and the
power consumption requirements of an application.

3. Approach
This study aims to identify new methods, techniques and tools for
refactoring programs in order to improve the energy consumption
and still achieve a better performance on multi-core platforms.
Its main expected outcome is a catalog of refactorings targeting
two languages of the Java Virtual Machine platform: Java and
Scala. More specifically, the set of refactorings that we intend to
propose will support developers in employing different techniques
to manage the execution of units of work that can be performed in
parallel.

For example, a typical example of a refactoring to energy effi-
ciency is between Thread and tasks from ForkJoin framework.
It is well-known that Thread has high overhead (creating, schedul-
ing, destroying, etc) which might outperform the useful computa-
tion. On the other hand, the ForkJoin is a lighter-weight thread-
like entity, which could host a large number of tasks in a pool of
small number of threads. Nonetheless, given the nature of divide-
and-conquer algorithms, tasks that run in parallel should have the
following characteristics: (i) are CPU-bound, not IO-bound; (ii) de-
pending on the sequential threshold, and (iii) only need to synchro-
nize when waiting for subtasks to complete. If the above conditions
are satisfied, the refactoring could be applied.

Another, similar example is the refactoring between Thread
and Scala Actors. However, as we reported elsewhere, a number
of factors could impact these refactorings. We intend to investigate
each case fully to determine if the refactoring will be beneficial.

Thus, to better understand the open problems of this area, that
is, the refactoring approaches that could be derived, the author ini-
tially carried out a literature review to fully understand current is-
sues within concurrent programming, as well as the energy con-
sumption of high level application. The findings from this review
are discussed in section 1 and 2 above, and highlight the importance
of this topic.

An initial investigation was carried out to understand the vari-
ous concurrent construct under several workloads. Previous results
show that it is not as straightforward as it would seem. One reason
to this, is because each language construct has its pros and cons.
For instance, the ForkJoin framework, which is highly indicated
to fine-grained parallelism, should be avoided in applications that
make use of synchronized methods or blocks, or other blocking
synchronization apart from joining other tasks and when perform-
ing blocking IO. To understanding which scenario a given trans-
formation could achieve better results, for both performance and
energy, is part of this work.

This study focus on two mainstream languages that are part
of the Java Virtual machine platform: Java and Scala. The Java
language was chosen because it is widespread in both academia
and industry. Moreover, Java offers several high-level libraries that
implement complex concurrent algorithms, besides the traditional
model based on threads and shared data. On the other hand, Scala
is a mixed object-functional language, which is very interesting to
use to solve problems concurrently, since Scala can eliminate side-
effects, and thus, problems like race conditions. Scala also has its
own interesting properties for concurrent programming. One sim-
ple way to write concurrent programs is with Scala actors. The gen-
eral approach is to create actors that represent the computation that
you want to run asynchronously, and then start these computations
by using one of the triggering functions. One key thing about the
actors programming model is that it provides primitives that are
scalable and you can be use for both CPU and I/O computations.

4. Evaluation Methodology
The author is currently in the process of assessment of the energy
efficiency of concurrent constructs. A number of experiments have
been done, and few more experiments should be conducted.

4.1 Hypothesis
This study has two hypotheses. The primary hypothesis is that it
is possible to generalize the relationship between performance and
energy consumption in concurrent programs. The secondary hy-
pothesis is that programmers can safely refactor their applications
in order to improve both performance and energy efficiency. Our
benefits include: (i) a better understanding of the energy efficiency
of concurrent constructs in the JVM; (ii) a set of factors that could
also imply on the energy efficiency of a given application, and (iii)



a catalog of refactorings that will help application programmers to
better use energy resource.

4.2 Experiment Setup
The experiment setup of this study will be conducted by performing
the following activities:

• Measurement: To assess the energy efficiency of the most com-
mon concurrent programming constructs. For example, in the
Java language, Thread and Runnable classes are the most
important concurrent constructs [11]. Initially, experiments to
measure the energy efficiency of these constructs targeted pro-
grams from a set of benchmarks, since it provides a wide range
of concurrent applications that employ varied constructs.
Preliminary experiments have been executed and show that it
is possible to switch from one technique to another in order to
consume less energy [7]. Nonetheless, we also conclude that it
is very hard to identify which technique is the better for a given
scenario. Moreover, our experiments show that factors such as
the nature of the problem to be solved, the technique used to
manage concurrent execution, the CPU clock frequency, and
the JVM implementation can create variations. For example, for
a CPU-bound problem, the ForkJoin framework can perform
better while using less energy. At the same time for a heavily
IO-bound problem, it can consume about 10% more energy than
a sequential implementation, although still 30% faster. We also
noticed that the choice of the JVM implementation can increase
the energy consumption in more than 10%.

• Study Design: The refactorings from the catalogue are accord-
ingly organized in three groups, each focusing on one of the
refactoring phases. Their phases are (i) identify code which ac-
tually runs concurrently; (ii) identify which constructs could
be replaced in order to improve performance and energy effi-
ciency; (iii) extract code into the new concurrent construct.

• Evaluation by specialists: To assess the generality of the refac-
toring catalog, the refactorings will be applied to an existing
system by a specialist. We will document the scenarios where
the refactorings can not be applied and use this information to
analyze whether they need to be more general and, if so, how
that goal can be achieved.

• Evaluation by controlled experiments: Controlled experiments
with graduate and undergraduate students. These studies will
compare the performance of students explicitly instructed in
the use of the transformations against students performing ad-
hoc restructuring. Performance will be measured in terms of the
time to complete the assignment and the number and nature of
the bugs in the code, if any.

5. Future Work
As future work, we are planning to implement a tool in order to to
aim programmer to refactoring their application automatically. This
tool should be integrated with well-known IDE, such as Eclipse
and InteliJ. Moreover, we need to adapt our approach to use other
JVM-languages. Thus, this allows us to go beyond the traditional
refactoring approach in order to propose refactorings between lan-
guages. We also intend to investigate how this approach can be used
to improve the battery life of Android phones.

6. Acknowledgments
I would like to thank Professor Fernando Castor (my supervisor)
for the fruitful discussions we had about the ideas of my PhD
thesis proposal, Francisco Neto-Soares for the valuable reviews,
and the OOPSLA anonymous reviewers for their helpful com-
ments. This work is supported by Brazilian funding agencies. Gus-
tavo is supported by CAPES and Fernando is supported by CNPq
(306619/2011- 3), FACEPE (APQ-1367-1.03/12), and by INES
(CNPq 573964/2008-4 and FACEPE APQ-1037- 1.03/08).

References
[1] J. Asafu-Adjaye. The relationship between energy consumption, en-

ergy prices and economic growth: time series evidence from asian de-
veloping countries. Energy Economics, 22(6):615 – 625, 2000. ISSN
0140-9883. .

[2] M. Cohen, H. S. Zhu, E. E. Senem, and Y. D. Liu. Energy types. In
Proceedings of the 13th OOPSLA, pages 831–850, 2012.

[3] M. G., M. J., J. J., and A. W. Removing energy code smells with
reengineering services. In Beitragsband der 42. Jahrestagung der
Gesellschaft fr Informatik e.V. (GI), volume 208, pages 441–455. Bon-
ner Kllen Verlag, 2012.

[4] J. Jelschen, M. Gottschalk, M. Josefiok, C. Pitu, and A. Winter. To-
wards applying reengineering services to energy-efficient applications.
In CSMR, pages 353–358, 2012.

[5] D. Lea. A java fork/join framework. In Java Grande, pages 36–43,
2000.

[6] S. Okur and D. Dig. How do developers use parallel libraries. In
Proceedings of the 21st ACM SIGSOFT Symposium on Foundations
of Software Engineering, 2012.

[7] G. Pinto and F. Castor. On the implications of language constructs
for concurrent execution in the energy efficiency of multicore applica-
tions. In OOPSLA Companion, 2013. to appear.

[8] A. S., W. D., E. F., D. G., L. C., and D. G. Enerj: approximate data
types for safe and general low-power computation. In Proceedings of
the 32nd, PLDI ’11, pages 164–174, 2011. ISBN 978-1-4503-0663-8.

[9] C. Sahin, F. Cayci, I. Gutiérrez, J. Clause, F. Kiamilev, L. Pollock, and
K. Winbladh. Initial explorations on design pattern energy usage. In
GREENS, pages 55–61, 2012.

[10] L. A. Smith, J. M. Bull, and J. Obdrzálek. A parallel java grande
benchmark suite. In Proceedings of the 2001 ACM/IEEE conference
on Supercomputing (CDROM), Supercomputing ’01, pages 8–8, New
York, NY, USA, 2001. ACM. ISBN 1-58113-293-X.

[11] W. Torres, G. Pinto, B. Fernandes, J. a. P. Oliveira, F. A. Ximenes,
and F. Castor. Are java programmers transitioning to multicore?: a
large scale study of java floss. In Proceedings of the Transitioning to
multicore (TMC’11), SPLASH ’11, pages 123–128. ACM, 2011.

[12] A. Trefethen and J. Thiyagalingam. Energy-aware software: Chal-
lenges, opportunities and strategies. Journal of Computational Sci-
ence, 1(0):–, 2013. ISSN 1877-7503. .

[13] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang. Refac-
toring android java code for on-demand computation offloading. In
OOPSLA, pages 233–248, 2012.

[14] W. Zhu, J. del Cuvillo, and G. R. Gao. Performance characteristics of
openmp language constructs on a many-core-on-a-chip architecture.
In IWOMP, pages 230–241, 2006.


