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Abstract

Java programmers are served with numerous choices of collections, varying from simple sequential ordered
lists to more sophisticated, thread-safe, and highly scalable hashtable implementations. These choices are
well-known to have different characteristics in terms of performance, scalability, and thread-safety, and most
of them are well studied. This paper analyzes an additional dimension, energy efficiency. Through an
empirical investigation of 16 collection implementations grouped under 3 commonly used collections (Lists,
Sets and Maps), we show that small design decisions can greatly impact energy consumption. The study
serves as a first step toward understanding the energy efficiency of Java collections on parallel architectures.
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1. Introduction

A question that often rises in software develop-
ment forums is: “since Java has so many collection
implementations, which one is more suitable to my
problem?”1. Answers to this question come in dif-5

ferent flavors: these collections serve for different
purposes and have different characteristics in terms
of performance, scalability and thread-safety. De-
velopers should consider these characteristics in or-
der to make judicious design decisions about which10

implementation best fits their problems. In this
study, we consider one additional attribute: energy
efficiency.

Traditionally addressed by hardware-level
(e.g., [1, 2]) and system-level approaches15

(e.g., [3, 4]), energy optimization is gaining
momentum in recent years by focusing on appli-
cation development (e.g., [5, 6]). This crescent
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interest is in part due to recent studies that have
provided empirical evidences that even great strides20

can be achieved when software engineers start to
play the role of reducing energy consumption
through their high-level design and implementa-
tion decisions [7, 8]. However, in order to find
energy-efficient solutions, developers sometimes25

make use of conventional wisdom, consult software
development forums and blogs, or simply search
online for “tips and tricks”. Unfortunately, many
of the available suggestions are not supported
by empirical evidence. Also, as pointed out by30

recent research, some of these guidelines are often
anecdotal or even incorrect [9].

Moreover, there is considerable evidence that
many users complain about battery usage when
writing reviews about their apps [10]. Battery con-35

sumption can play an important role on the de-
cision to adopt an app. However, even though
there are existing tools that can help developers
to gain insight into the energy usage of their appli-
cations [11, 12], these tools do not provide direct40

guidance on how to improve the overall energy con-
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sumption of an application; that is, they do not
address the gap between understanding where en-
ergy is consumed and understanding how the code
can be changed in order to reduce energy consump-45

tion. This fact provide incentives to researchers to
conduct new empirical studies on the subject.

Unfortunately, despite its importance, there is
a gap in the literature of empirical studies tack-
ling the problem of understanding the energy con-50

sumption impact of using different Java collections
running on parallel architectures [13]. We believe
this is an important topic that deserves more in-
vestigation due to at least three reasons: (1) data
structures are one of the most important building55

blocks of computer programming; (2) not only high-
end servers but also desktop machines, smartphones
and tablets need concurrent programs to make the
best use of their multi-core hardware; and (3) a
CPU with more cores (say 32) often consumes more60

power than one with fewer cores (say 1 or 2) [14].

This paper takes a step towards remedying this
problem. We present an empirical study consist-
ing on the evaluation of performance and energy
consumption characteristics of 16 Java collection65

implementations grouped by 3 well-known collec-
tions: List, Set, and Map. The goal of this work
is to obtain a deeper understanding of the energy
consumption behavior of the Java concurrent collec-
tions. Trough an empirical exploration conducted70

in a multi-core environment, we correlate energy
behaviors of different thread-safe implementations
of Java collections and their knobs. We demon-
strate that several factors can impact energy effi-
ciency and performance in different ways. The main75

findings of this study are the following:

• Different implementations of the same collec-
tion exhibit very different energy consump-
tion behavior. For example, a removal oper-
ation on a Collections.synchronizedSet()80

can be more than 4 times more expensive than
a traversal on a ConcurrentHashSetV8.

• Different operations on the same im-
plementation also behave differently.
For example, removal operations in a85

ConcurrentSkipListMap can be more
than 4 times expensive than an insertion.
Also, for CopyOnWriteArraySet, an insertion
consumed three order of magnitude more than
a read. These results suggest that, to select90

an appropriate collection implementation,

developers must carefully consider how it will
be used.

• Execution time can safely be used as a proxy
for energy consumption when dealing with95

Lists and Sets. The same it not always true
for Maps.

• Faster is not a synonym for greener. We have
observed cases where a high-performance im-
plementation consumes more energy than a100

single-lock based one.

In this study, we examine 3 basic operations, an-
alyze energy-performance trade-offs and stick the
to comparing implementations of the same collec-
tions. We believe that cross-collection comparisions105

would not be very interesting, since they serve for
different purposes. With the results of this study,
we believe we can influence the high-level program-
ming decisions of next generation of energy-aware
programmers.110

2. Related Work

The energy impacts of different design decisions
made by software engineers have been previously in-
vestigated in several empirical studies. These stud-
ies analyzed a number of factors, varying from sort-115

ing algorithms [15], constructs for managing con-
current execution [6], design patterns [16], refac-
toring [8], cloud offloading [17, 7, 18], VM ser-
vices [19], code obfuscation [20], among many oth-
ers. Zhang et al. [18] presented a mechanism120

for automatically refactoring an Android app into
one implementing the on-demand computation of-
floading design pattern, which can transfer some
computation-intensive tasks from a smartphone to
a server so that the task execution time and bat-125

tery power consumption of the app can be reduced
significantly. Cao et al. [19] described how different
VM services (such as the Just-In-Time compiler,
interpretation and/or the garbage collector) con-
sumes in energy consumption. They observed that130

together these services impose substantial energy
and performance costs, ranging from 10% to over
80%. In contrast, Li et al.[5] presented an evalu-
ation of a set of programming practices suggested
in the official Android developers web site. They135

observed that although some practices, such as the
network packet size, can provide interesting degrees
of savings, while some others, such as limiting mem-
ory usage, had a very minimal impact on energy
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usage. Finally, the work of Vallina-Rodriguezet140

al. [21] presents a survey on general solutions for
energy efficiency on mobile devices at the software
level. These solutions vary from operating system
solutions to energy savings via process migration to
the cloud and protocol optimizations.145

The performance of data structures is also an ac-
tive area of research, with great improvements in
lock-free data structures [22], spatial data struc-
tures [23], dynamic-sized data structures [24],
among many others. The Java collections are also150

focus of several studies [25, 26, 27]. Our work
and related work cited here are complementary.
Together, they attempt to understand the perfor-
mance of different data structures. However, all of
the works mentioned above related to data struc-155

tures do not provide general high level guidance to
developers in terms of energy efficiency practices in
programming.

To the best of our knowledge, only two studies
dealt with the topic of understanding how energy160

consumption changes when developers employ dif-
ferent collections [28, 13]. In the first study, Man-
otas et al. [28] focus on a framework used to opti-
mize energy consumption by automatically select-
ing the most energy-efficient collection implemen-165

tation. This framework alternates the implemen-
tations and measures the energy consumption at
runtime. In this study, however, the authors do
not analyze their subjects in a multi-core environ-
ment, and also they do not discuss the impact of170

different operations (such as reads, insertions and
removals) on energy consumption. In the study of
Hunt et al. [13], the authors provided a comprehen-
sive overview in terms of energy, power and per-
formance of three data structures (a simple FIFO,175

a double-ended queue, and a sorted linked list).
The authors also demonstrated a strong correlation
between the performance of a data structure and
its total energy consumption. However, we believe
that our work greatly extends their work, consid-180

ering 3 groups of collections, implemented by 16
classes. We also analyze the cost of read, insertion
and removal operations, in addition to Map imple-
mentations, which are not covered by the study of
Hunt et al. [13].185

3. Study Setup

In this section we describe the research questions,
the benchmarks that we analyzed, the infrastruc-

ture and the methodology that we used to perform
the experiments.190

3.1. Research Questions

Our research is motivated by the following re-
search questions:

RQ1. Do different implementations of the same col-
lection have different impacts on energy con-195

sumption?

RQ2. Do different operations in the same implemen-
tation of a collection consume energy differ-
ently?

The goal of this study is to answer these re-200

search questions. To achieve this goal, we per-
formed an experimental space exploration over well-
known thread-safe Java collections.

3.2. Benchmarks

The benchmarks used in this study consist of205

16 commonly used collections available in the Java
programming language. Our focus is on the thread-
safe implementations of the data structures. Hence,
for each data structure, we selected a single non-
thread-safe implementation to serve as a baseline.210

For each one of them, we analyzed insertion, re-
moval and traversal operations. We grouped these
implementations by their collections.

Lists (java.util.List): Lists are ordered
collections that allow duplicate elements. Us-215

ing this collection, programmers can have pre-
cise control over where an element is inserted
in the list. The programmer can access all el-
ements using their indexes, or traverse the el-
ements using an Iterator. Several implemen-220

tations of this collection are available in the
Java language. We used ArrayList, which is
not thread-safe, as our baseline. We also used
the following thread-safe List implementations:
Vector, Collections.synchronizedList(), and225

CopyOnWriteArrayList. The latter was intro-
duced in Java 5 Concurrency API. It achieves
thread-safety in a slightly different way than
Vector. This class by creates a copy of the un-
derlying ArrayList whenever a mutation operation230

(e.g., using the add() or set() methods) is invoked.

Sets (java.util.Set): As its name suggests,
the Set collection models the mathematical set
abstraction. Unlike Lists, Sets do not count
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duplicate elements, and are not ordered. Thus,235

the elements of a set cannot be accessed by their
indexes, and traversals are only possible using an
Iterator. Among the available implementations,
we used LinkedHashSet, which is not thread-safe,
as our baseline. We also used the following thread-240

safe Set implementations: CopyOnWriteArraySet,
Collections.synchronizedSet(),
ConcurrentSkipListSet, ConcurrentHashSet,
and ConcurrentHashSetV8. Although there is
no ConcurrentHashSet implementation avail-245

able in the JDK, we can mimic its behavior
by using a Collections.newSetFromMap(new

ConcurrentHashMap<Object,Boolean>()). The
resulting Set displays the same ordering, scal-
ability in the presence of multiple thread, and250

performance characteristics as the backing map.

Maps (java.util.Map): Maps are objects that
map keys to values. The keys of a map can-
not be duplicated, and are associated with
at most one value. The values can be du-255

plicated. From the available maps, we used
LinkedHashMap, which is not thread-safe, as
our baseline. We did not used HashMap as our
baseline, because it entered into an infinite loop
when performing our experiments2. We also used260

the following thread-safe Map implementations:
Hashtable, Collections.synchronizedMap(),
ConcurrentSkipListMap, ConcurrentHashMap,
and ConcurrentHashMapV8. The difference be-
tween the two ConcurrentHashMaps is that the265

latter is an optimized version released in Java 1.8,
while the former is the version present in the JDK
until Java 1.7. All these Map implementations
offer mostly the same functionalities. The most
important difference, however, is the order in270

which iteration through the entries will happen.
For instance, while LinkedHashMap iterates in the
order in which the elements are added into the
map, a Hashtable makes no guarantees about the
iteration order.275

3.3. Experimental Environment

All experiments were conducted on a ma-
chine with 2×16-core AMD Opteron 6378 proces-
sors (Piledriver microarchitecture) running Debian
3.2.46-1 x86-64 Linux (kernel 3.2.0-4-amd64), 64GB280

2A possible explanation can be found
here: http://mailinator.blogspot.com/2009/06/

beautiful-race-condition.html

of DDR3 1600 memory, Oracle HotSpot 64-Bit
server VM, and JDK version 1.7.0 11, build 21.
When we performed the experiments with Sets and
Maps, we employed the jsr166e library3, which con-
tains the ConcurrentHashMapV8 implementation.285

Thus, these experiments do not need to be executed
under Java 1.8.

All experiments were performed with no other
load on the OS. We conform to the default set-
tings of both the OS and the JVM. Several de-290

fault settings are relevant to this context: (1) the
power management of Linux is the default onde-
mand governor, which dynamically adjusts CPU
core frequencies based on system workloads. (2)
For the JVM, the parallel garbage collector is used,295

and just-in-time (JIT) compilation is enabled. The
initial heap size and maximum heap size are set
to be 1GB and 16GB respectively. We run each
benchmark 10 times within the same JVM; this is
implemented by a top-level 10-iteration loop over300

each benchmark. The reported data is the average
of the last 3 runs. We chose the last three runs be-
cause, according to a recent study, JIT execution
tends to stabilize in the latter runs [6].

Energy consumption is measured through current305

meters over power supply lines to the CPU module.
Data is converted through an NI DAQ and collected
by NI LabVIEW SignalExpress with 100 samples
per second and the unit of the current sample is
deca-ampere (10 ampere). Since the supply voltage310

is stable at 12V, energy consumption is computed as
the sum of current samples multiplied by 12×0.01×
10. We measured the “base” power consumption of
the OS when there is no JVM (or other application)
running. The reported results are the measured315

results modulo the “base” energy consumption.

4. Study Results

In this section, we report the results of our ex-
periments. In RQ1 and RQ2, we fixed the number
of threads in 32 and, for each group of collections,320

we performed and measured insertion and traversal
operations. Each thread inserts 100,000 elements.
To avoid duplicate elements, we used the resulting
string thread-id + “-” + current-index as the ele-
ment to be added. The removal operation occurs in325

place; that is, there is no need to traversal the data
structure.

3Source code available at: http://gee.cs.oswego.edu/

cgi-bin/viewcvs.cgi/jsr166/src/jsr166e/
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Figure 1 shows the overall view of our experi-
mental results. The figure shows the energy con-
sumption (bars) and execution time (line). Each330

bar represents one collection. The figures in
the top, middle and bottom represent the col-
lection implementations of the List, Set and
Map collections, respectively. Figures in the left
show traversal operations whereas figures in the335

right show insertion operations. We did not
show the figures for CopyOnWriteArrayList and
CopyOnWriteArraySet because they are outliers
and biased the meaning of the figures.

We now describe the results in terms of each340

group of collection.

Lists. Taking into consideration the implemen-
tations of the List collection, we can see that,
for insertion operations, ArrayList is the most
energy efficient. When comparing the thread-345

safe implementations, Vector consumes 1.30x less
energy than Collections.synchronizedList()

(1.24x for execution time). On the other
hand, CopyOnWriteArrayList consumes about
152x more energy than Vector. This is be-350

cause, for each new element added to the list,
CopyOnWriteArrayList needs to synchronize and
create a fresh copy of the underlying array using the
System.arraycopy() method. As discussed else-
where [6], even though the System.arraycopy()355

behavior can be noticeable in sequential applica-
tions, it is more evident in highly parallel appli-
cations, when several processors are busy mak-
ing copies of the data structure, preventing them
from doing important work. Although this behav-360

ior makes this implementation thread-safe, it is or-
dinarily too costly to maintain the collection in a
highly concurrent environment where insertions are
not very rare events.

The traversal operations also incur some trade-365

offs. The traversal operations described here are
performed using a top-level loop over the collec-
tion, accessing each element by its index using the
List.get(Object o) method4. In this configura-
tion, the Vector implementation presents the worst370

result among the benchmarks: it consumes 14.58x
more energy and 7.9x more time than the base-
line. One of the reasons for that is because the

4We can not reproduce this experiment using the Set im-
plementations, because this collection does not provide the
get() method.

Vector and Collection.synchronizedList() im-
plementations need to synchronize in traversal op-375

erations. In contrast, the CopyOnWriteArrayList

implementation is more efficient than Vector for
traversal operations, consuming 46.38x less en-
ergy than Vector. We also observed that, when
the upper bound limit need to be computed in380

each iteration, for instance, using for (int i=0;

i<list.size(); i++), the Vector implementa-
tion consumed about twice as much as it con-
sumed when using this limit is computed only once
(1.98x more energy and 1.96x more time), for in-385

stance, using int size = list.size(); for(int

i=0; i<size; i++).
Moreover, in order to understand

the get() behavior presented in the
Collections.synchronizedList() implementa-390

tion, it is important to take into consideration
some internal implementation details. The
Collections.synchronizedList() method cre-
ates an instance of the SynchronizedList class,
which is a synchronized proxy for any List im-395

plementation. This class can be seen as a relative
of the Vector one, except for the fact that the
latter synchronizes in the Iterator, whereas
the former does not. As observed in Figure 1,
Collections.synchronizedList() performs400

much better than a Vector. We believe that the
main reason for this redundancy is backward com-
patibility with Java code developed for old versions
of Java. Before Java 1.2, the Collections class
was not part of standard JDK/JRE environment.405

Nowadays, the main difference between Vector

and SynchronizedList is the way of use. By using
Collections.synchronizedList(), the program-
mer creates a wrapper around the current List im-
plementation, which does not need to copy data to410

another data structure. It is appropriate in cases
where the programmer wants to use a LinkedList

as opposed to an ArrayList. Using a Vector, on
the other hand, it is not possible to keep an alter-
native underlying structure (such as LinkedList).415

We cannot perform removals using Iterators be-
cause they are “fast-fail”, that is, they fail as soon
as they realize that the underlying structure has
been modified since iteration begun. Such changes
mean adding, removing, or updating any element420

from a collection while one thread is iterating over
that collection. When it happens, the Iterator

throws a ConcurrentModificationException.
We also analyzed traversal operations when

the programmer iterates using an enhanced for425
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Figure 1: Energy and performance results for read, insertion and removal operations for different implementations of Java
collections. Bars mean energy consumption and line means execution time. For the List figures, AL means ArrayList,
VEC means Vector, and CSL means Collections.synchronizedList(). For the Set figures, LSH means LinkedHashSet,
CSS means Collections.synchronizedSet(), SLS means ConcurrentSkipListSet, CHS means ConcurrentHashSet, and CHSV8

means ConcurrentHashSetV8. Finally, for the Map figures, LSM means LinkedHashMap, HT means Hashtable, CSM means
Collections.synchronizedMap(), SLM means ConcurrentSkipListMap, CHM means ConcurrentHashMap, and CHMV8 means
ConcurrentHashMapV8. We did not present the results for CopyOnWriteArrayList and CopyOnWriteHashSet in this figure because
they present a much higher energy and time consumption, and they biased the understanding of the figures.
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loop, for instance, using for (String e: list),
which is translated to an Iterator at compile
time. In this configuration, Vector need to syn-
chronize in two different moments: during the
creation of the Iterator object, and in every430

call of the next() method. By contrast, the
Collections.synchronizedList() does not syn-
chronize on the Iterator, and thus has sim-
ilar performance and energy usage when com-
pared to our baseline, ArrayList; Energy de-435

creased from 37.07J to 2.65J, whereas time
decreased from 0.81 to 0.10. According to
the Collections.synchronizedList() documen-
tation, the programmer must ensure external syn-
chronization when using Iterator.440

Interestingly, however, we have observed that re-
movals consumed 198.99x more energy than inser-
tions on the Vector implementation. Time in-
creased 853.21x more. This huge difference pre-
vented us to conduct the experiments for all im-445

plementations in this configuration. We believe
that this is because each call to the List.remove()
method leads to a call of a System.arrayCopy()

method in order to resize the List, since all these
implementations of List are built upon arrays.450

In comparison, insertion operations only lead to
a System.arrayCopy() call when the maximum
number of elements is reached.

For all above cases, we observed that energy fol-
lows the same shape as time. At the first impres-455

sion, this finding might seem to be “boring”. How-
ever, recent studies have observed that energy and
time are often not correlated [6, 11, 29], particu-
larly true for concurrent applicaitonsFor this set of
benchmarks, however, we believe that developers460

can safely use time as a proxy for energy, which
can be a great help when refactoring an application
to consume less energy.

Sets. First, for all of the implementations of Set,
we can also observe that energy consumption fol-465

lows the same behavior of execution time on traver-
sal operations. For insertion and removal opera-
tions, they are not proportional. For all operations,
the ConcurrentHashMapV8 present the best results
among the thread-safe ones. However, an inter-470

esting trade-off can be observed when performing
traversal operations. As expected, the non-thread-
safe implementation, LinkedHashSet, achieved the
best energy consumption and execution time re-
sults, followed by the CopyOnWriteArraySet imple-475

mentation. We believe that the same recommenda-

tion for CopyOnWriteArrayList fits here: this col-
lection should only be used in scenarios where reads
are the much more frequent than insertions. Inter-
estingly, ConcurrentHashMap presented the worst480

results, consuming 1.23x more energy and 1.14x
more time than.

Another interesting result is observed
with ConcurrentSkipListSet, which con-
sumes only 1.31x less energy than a485

Collections.synchronizedList() on removal
operations, although it saves 4.25x in execution
time. Internally, ConcurrentSkipListSet relies on
a ConcurrentSkipListMap, which is non-blocking,
linearizable, and based on the compare-and-swap490

(CAS) operation. During traversal, this collection
marks the “next” pointer to keep track of triples
(predecessor, node, successor) in order to detect
when and how to unlink deleted nodes. Also,
because of the asynchronous nature of these495

maps, determining the current number of elements
(used in the Iterator) requires a traversal of
all elements. These behaviors are susceptible to
create the energy consumption overhead observed
in Figure 1.500

Maps. The Map implementations present a differ-
ent picture. For the LinkedHashMap, Hashtable

and Collections.synchronizedMap() implemen-
tations, energy follows the same curve as time, for
both read and insertion operations, with the best505

results also achieved by the non-thread-safe im-
plementation, LinkedHashMap. Surprisingly, how-
ever, the same cannot be said for the removal
operations. Removal operations on Hashtable

and Collections.synchronizedMap() exhibited510

energy consumption are proportionally higher than
their execution time.

On the other hand, for the
ConcurrentSkipListMap, ConcurrentHashMap

and ConcurrentHashMapV8 implementations, more515

power is being consumed behind the scenes. Since
energy consumption is the product of power con-
sumption and time, if the benchmark receives a 1.5x
speed-up but, at the same time, yields a threefold
increase in power consumption energy consumption520

increase twofold. This scenario is roughly what
happens in traversal operations, when transitioning
from Hashtable to ConcurrentHashMap. Even
though ConcurrentHashMap produces a speedup
of 1.46x over the Hashtable implementation, it525

achieves that by consuming 1.50x more power. As
a result, overall, ConcurrentHashMap consumed
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slightly more energy than Hashtable (2.38%).
This result is relevant mainly because several
textbooks [30], research papers [31] and internet530

blog posts [32] suggest ConcurrentHashMap as
the de facto replacement for the old associative
Hashtable implementation. Our result sug-
gests that the decision on whether or not to
use ConcurrentHashMap should be made with535

care, in particular, in scenarios where the energy
consumption is more important than performance.
However, the newest ConcurrentHashMapV8 im-
plementation, released in the version 1.8 of the
Java programming language, handles large maps540

or maps that have many keys with colliding hash
codes more gracefully. ConcurrentHashMapV8

provides a performance saving of 2.19x when
compared to ConcurrentHashMap, and an energy
saving of 1.99x in traversal operations (these545

savings are, respectively, 1.57x and 1.61x in inser-
tion operations, and 2.19x and 2.38x in removal
operations).
ConcurrentHashMapV8 is a complete rewritten

version of its predecessor. The primary design goal550

of this implementation is to maintain concurrent
readability (typically method get(), but also on
Iterators) while minimizing update contention.
This map acts as a binned hash table. Internally, it
uses tree-map-like structures to maintain bins con-555

taining more nodes than would be expected under
ideal random key distributions over ideal numbers
of bins. This tree also require an additional locking
mechanism. While list traversal is always possi-
ble by readers even during updates, tree traversal560

is not, mainly because of tree-rotations that may
change the root node and its links. Insertion of
the first node in an empty bin is performed with
a Compare-And-Set operation. Other update op-
erations (insert, delete, and replace) require locks.565

Locking support for these locks relies on builtin
“synchronized” monitors.

Energy-Performance Trade-offs. We used
a well-known metric, Energy × DelayProduct
(EDP) [33], in order to investigate the relationship570

between energy and performance. We compute the
EDP for the benchmarks, with results presented
in Table 1, where a smaller EDP value indicates
the more favorable trade-off (e.g., better energy
efficiency). We use boldface to highlight the575

smallest value for each case.
From this table, we can observe that the non-

thread-safe implementation is generally more fa-

Collections
EDP

TR IN RM

AL 2.65 1.48 —
VEC 38.66 48.92 —
CSL 37.05 79.49 —
COW 2.71 1,675,167.56 —

LHS 0.48 78.89 44.80
CSS 41,452.23 548.50 687.46
SLS 26,342.24 16.97 122.95
COS 3.04 3,124,257.43 —
CHS 58,435.88 22.04 20.61
CHSV8 2,792.22 7.18 4.32

LHM 0.51 27.38 72.38
HT 93,496.19 410.31 633.85
CSM 133,727.52 465.64 551.46
SLM 30,282.72 21.44 593.52
CHM 65,358.94 23.71 62.83
CHMV8 14,919.93 9.55 12.02

Table 1: EDP (a smaller value is better). We use the same
abbreviations of Figure 1. TR means traversal, IN means
insertion and RM means removal.

vorable for energy-performance trade-offs than its
thread-safe counterparts. This is particularly true580

for traversal operations, where the non-thread-safe
implementations are the best for all groups of col-
lections. For insertion and removal operations
on Lists, the non-thread-safe implementation also
achieves the best energy-performance. For the585

other cases, the best results are achieved by the
ConcurrentHashSetV8 and ConcurrentHashMapV8

implementations, due to the considerable speedups
achieved by these implementations in the presence
of multiple threads.590

Maps tuning knobs. The Map implementations
also have two important “tuning knobs”: the initial
capacity and load factor. The capacity is the total
number of elements inside a Map and the initial ca-
pacity is the capacity at the time the Map is created.595

The default initial capacity size of most Map imple-
mentations is only 16 locations. We now report a
set of experiments varying the initial capacity from
16 elements, 32, 320, 3200, 32000, 320000, 3200000,
3200000, and 32000000 — the last one is the total600

elements inside a collection. Figure 2 shows how
energy consumption behaves using these different
initial capacities configurations.

As we can observe from this figure, the results
can vary greatly when using different inital capac-605
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Figure 2: Energy consumption and performance variations
with different initial capacities.

ities, both in energy consumption and execution
time. The most evidente cases are when perform-
ing with a high number as a initial capacity in both
Hashtable and ConcurrentHashMap implementa-
tions. ConcurrentHashMapV8, on the other hand,610

present a more stable results.
The other tuning knob is the load factor. It is

a measure of how full the hash table is allowed to
get before its capacity is automatically increased.
When the number of elements inside a Map exceeds615

the product of the load factor and the current ca-
pacity, the hash table is rehashed; that is, its in-
ternal data structure is rebuilt. The default load
factor value in most Map implementation is 0.75.
It means that, using initial capacity as 16, and the620

load factor as 0.75, the product of capacity is 12 (16
* 0.75 = 12). Thus, after inserting the 12th key, the
new map capacity after rehashing will be 32. If the
initial capacity is greater than the maximum num-
ber of entries divided by the load factor, no rehash625

operations will ever occur. Figure 3 shows how en-
ergy consumption behaves using different load fac-
tors configurations5.

From this figure we can observe that, albeit small,

5We did not performed experiments with
ConcurrentSkipListMap because it does not provide
access to initial capacity and load factor variables.
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Figure 3: Energy consumption and performance variations
with different load factors.

the load factor also influences both energy con-630

sumption and time. For instance, when using a
load factor of 0.25, we observed the most energy
inefficient results, except in one case (the energy
consumption of LinkedHashMap). We believe it is
due to the successive times the map needs to be re-635

hashed. Generally speaking, the default load factor
(.75) offers a good tradeoff between performance,
energy and space costs. Higher values decrease the
space overhead but increase the time cost to look up
an entry, which can reflect in most of the Map oper-640

ations, including get() and put()). It is possible
to observe this cost when using a load factor of 1.0,
which means that the map will be only rehashed
when the number of current elements reaches the
current maximum size. The maximum variation645

was found when performing a Hastable, in the de-
fault load factor, achieving 1.17x better energy con-
sumption over the 0.25 configuration, and 1.09x in
execution time.

Hash collisions. We also investigated how hash650

collisions impact energy consumption. In this sce-
nario, a collision is a situation that occurs when two
or more keys happen to have the same hashCode.

We performed experiments varying the number
collisions from 20%, 50%, 70%, to 100% — when655

we have 100% of collisions, it means that all in-
serted keys used the same hashCode. However, we
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only experienced significant variation in energy con-
sumption where the number of duplicated keys are
more than 50%. When the percentage of colliding660

keys is above this threshold, both performance and
energy consumption variations start being notice-
able.

Figure 4 shows the extreme case, the 100% config-
uration. LinkedHashMap, ConcurrentHashMap and665

ConcurrentHashMapV8 present an increment in per-
formance and energy consumption (variations in en-
ergy and time, respectively: 10.90% and 33.33%,
78.84% and 96.15%, 12.32% and 68.75%), whereas
Hashtable and Collections.synchronizedMap()670

present a decrement in both performance and en-
ergy (variations in energy and time, respectively:
-10.97% and -18.51%, -25.12% and -32%).
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Figure 4: Energy consumption and performance variations
when collision is 100%.

We believe this behavior can be explained in
terms of how the Map deals with the duplicated675

keys. For instance, the Hashtable implementation
does not take any care of additional keys, whereas
ConcurrentHashMap and ConcurrentHashMapV8

maintain a list of duplicated keys.
680

RQ1 Summary: We observed that differ-
ent implementations of the same collection
can greatly impact both energy consump-
tion and execution time. When comparing
CopyOnWriteArrayList with the non-thread-
safe implementation, the difference can be higher
than 152x.

RQ2 Summary: We observed that different op-
erations of the same collection can greatly impact
both energy consumption and execution time.
For instance, when performing with a Vector, a
removal operation can consume about 200x more
energy than a insertion one.

5. Threat to Validity

We divide our discussion on threats to validity
into internal factors and external factors.685

Internal factors: First, the elements which we
used are not randomly generated. We chose to not
use random number generators because they can
greatly impact the performance and energy con-
sumption of our benchmarks. We observed stan-690

dard deviation of over 70% between two executions
when using the random number generators. We
mitigate this problem by combining the index of
the for loop plus the thread id that inserted the
element. This approach also prevents compiler op-695

timizations that may happen when using only the
index of the for loop as the element to be inserted
in the collection.

External factors: First, our results are limited
by our selection of benchmarks. Nonetheless, our700

corpus spans a wide spectrum of collections, rang-
ing from lists, sets, and maps. Second, there are
other possible collections implementations beyond
the scope of this paper. With our methodology, we
expect similar analysis can be conducted by oth-705

ers. Third, our results are reported with the as-
sumption that JIT is enabled. This stems from our
observation that later runs of JIT-enabled execu-
tions do stabilize in terms of energy consumption
and performance [6]. We experienced differences in710

standard deviation of over 30% when comparing the
warmup run (first 3 executions) and later runs, but
less than 5% when comparing the last 3 runs.

6. Conclusions

In this paper, we presented an empirical study715

that investigates the impacts of using different col-
lections on energy usage. As subjects for the study,
we analyzed the main methods of 16 types of com-
monly used collection in the Java language. The
results of this study demonstrate that:720

Based on these conclusions, there are several po-
tential areas for future work. First, we plan on
enlarging the scope of our study. Although we con-
sidered a significant number of subjects, adding ad-
ditional collection, and their methods, would po-725

tentially allow us to refute or confirm some of our
observations in addition to perform the removal ex-
periments for all collections available. Second, we
believe that other tuning knobs should be studied,
such as varying the number of concurrent threads730

accessing the data structure, and varying the data
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size being manipulated in the data structure. With
insights of this study, we plan to introduce the con-
cept of relaxed collection. One step towards this
goal is to reduce their accuracy [34]. Since Java8735

introduced the concept of Streams, which use im-
plicitly parallelism and are well-suitable for data-
parallel programs, an approximate solution for a
given function, for instance sum the values of all el-
ements, over a huge collection can take a fraction of740

memory, time and, last but not least, energy con-
sumption.
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