
Automatically Generating Fix Suggestions in

Response to Static Code Analysis Warnings

Diego Marcilio
University of Brasília

Brasilia, Brazil

dvmarcilio@gmail.com

Carlo A. Furia

USI – Università della Svizzera Italiana

Lugano, Switzerland

bugcounting.net

Rodrigo Bonifácio

University of Brasília

Brasilia, Brazil

rbonifacio@unb.br

Gustavo Pinto

Federal University of Pará

Belém, Brazil

gpinto@ufpa.br

Abstract—Static code analysis tools such as FindBugs and
SonarQube are widely used on open-source and industrial
projects to detect a variety of issues that may negatively affect the
quality of software. Despite these tools’ popularity and high level
of automation, several empirical studies report that developers
normally fix only a small fraction (typically, less than 10% [1]) of
the reported issues—so-called “warnings”. If these analysis tools
could also automatically provide suggestions on how to fix the
issues that trigger some of the warnings, their feedback would
become more actionable and more directly useful to developers.

In this work, we investigate whether it is feasible to auto-
matically generate fix suggestions for common warnings issued
by static code analysis tools, and to what extent developers are
willing to accept such suggestions into the codebases they’re
maintaining. To this end, we implemented a Java program
transformation technique that fixes 11 distinct rules checked
by two well-known static code analysis tools (SonarQube and
SpotBugs). Fix suggestions are generated automatically based
on templates, which are instantiated in a way that removes the
source of the warnings; templates for some rules are even capable
of producing multi-line patches. We submitted 38 pull requests,
including 920 fixes generated automatically by our technique
for various open-source Java projects, including the Eclipse IDE
and both SonarQube and SpotBugs tools. At the time of writing,
project maintainers accepted 84% of our fix suggestions (95%
of them without any modifications). These results indicate that
our approach to generating fix suggestions is feasible, and can
help increase the applicability of static code analysis tools.

I. INTRODUCTION

Static code analysis tools (SATs) are becoming increasingly

popular as a way of detecting possible sources of defects

earlier in the development process [2]. By working statically

on the source or byte code of a project, these tools are appli-

cable to large code bases [3], [4], where they quickly search

for patterns that may indicate problems—bugs, questionable

design choices, or failures to follow stylistic conventions [5],

[6]—and report them to users. There is evidence [7] that

using these tools can help developers monitor and improve

software code quality; indeed, static code analysis tools are

widely used for both commercial and open-source software

development [1], [2], [4]. Some projects’ development rules

even require that code has to clear the checks of a certain

SAT before it can be released [1], [7], [8].

At the same time, some features of SATs limit their wider

applicability in practice. One key problem is that SATs are

necessarily imprecise in checking for rule violations; in other

words, they report warnings that may or may not correspond to

an actual mistake. As a result, the first time a static analysis

tool is run on a project, it is likely to report thousands of

warnings [2], [3], which saturates the developers’ capability

of sifting through them to select those that are more relevant

and should be fixed [1]. Another related issue with using

SATs in practice is that understanding the problem highlighted

by a warning and coming up with a suitable fix is often

nontrivial [1], [3].

Our research aims at improving the practical usability of

SATs by automatically providing fix suggestions: modifications

to the source code that make it compliant with the rules

checked by the analysis tools. We developed an approach,

called SpongeBugs and described in Section III, whose current

implementation works on Java code. SpongeBugs detects

violations of 11 different rules checked by SonarQube and

SpotBugs (successor to FindBugs [2])—two well-known static

code analysis tools, routinely used by very many software

companies and consortia, including large ones such as the

Apache Software Foundation and the Eclipse Foundation. The

rules checked by SpongeBugs are among the most widely

used in these two tools, and cover different kinds of code

issues (ranging from performance, to correct behavior, style,

and other aspects). For each violation it detects, SpongeBugs

automatically generates a fix suggestion and presents it to the

user.

By construction, SpongeBugs’s suggestions remove the

origin of a rule’s violation, but the maintainer still has to

decide—based on their overall knowledge of the project—

whether to accept and merge each suggestion. To assess

whether developers are indeed willing to accept SpongeBugs’s

suggestions, Section V describes the results of an empirical

evaluation where we applied SpongeBugs to 12 Java projects,

and submitted 920 fix suggestions as pull requests to the

projects. At the time of writing, project maintainers accepted

775 (84%) fix suggestions—95% of them without any modi-

fications. This high acceptance rate suggests that SpongeBugs

often generates patches of high quality, which developers find

adequate and useful. The empirical evaluation also indicates

that SpongeBugs is applicable with good performance to large

code bases; and reports (in Section V-D) several qualitative

findings that can inform further progress in this line of work.

The work reported in this paper is part of a large body of

dvmarcilio@gmail.com
bugcounting.net
rbonifacio@unb.br
gpinto@ufpa.br

research (see Section II) that deals with helping developers

detecting and fixing bugs and code smells. SpongeBugs’

approach is characterized by the following features: i) it

targets static rules that correspond to frequent mistakes that

are often fixable syntactically; ii) it builds fix suggestions that

remove the source of warning by construction; iii) it scales to

large code bases because it is based on lightweight program

transformation techniques. Despite the focus on conceptually

simple rule violations, SpongeBugs can generate nontrivial

patches, including some that modify multiple hunks of code at

once. In summary, SpongeBugs’s focus privileges generating a

large number of practically useful fixes over being as broadly

applicable as possible. Based on our empirical evaluation,

Section VI discusses the main limitations of SpongeBugs’s

approach, and Section VII outlines directions for further

progress in this line of work.

II. BACKGROUND AND RELATED WORK

Static analysis techniques reason about program behavior

statically, that is without running the program [9]. This is

in contrast to dynamic analysis techniques, which are instead

driven by specific program inputs (provided, for example, by

unit tests). Thus, static analysis techniques are often more

scalable (because they do not require complete executions)

but also less precise (because they over-approximate program

behavior to encompass all possible inputs) than dynamic

analysis techniques. In practice, there is a broad range of

static analysis techniques from purely syntactic ones—based

on code patterns—to complex semantic ones—which infer

behavioral properties that can be used to perform program

optimizations [10], [11] as well as performance problems and

other kinds of vulnerabilities [12], [13].

Static Code Analysis Tools. Static code analysis tools (SATs)

typically combine different kinds of analyses. This paper

focuses on the output of tools such as SonarQube, FindBugs,

and SpotBugs, because they are widely available and prac-

tically used [2]. The analysis performed by a SAT consists

of several independent rules, which users can select in ev-

ery run of the tool. Each rule describes a requirement that

correct, high-quality code should meet. For example, a rule

may require that Constructors should not be used to instan-

tiate String—one should write String s = "SpongeBugs"

instead of String s = new String("SpongeBugs").

Whenever a SAT finds a piece of code that violates one

of the rules, it outputs a warning, typically reporting the

incriminated piece of code and a reference to the rule that it

violates. It is then up to the developer to inspect the warning

to decide whether the violation is real and significant enough

to be addressed; if it is, the developer also has to come up

with a fix that modifies the source code and removes the rule

violation without otherwise affecting program behavior.

Empirical Studies on Static Code Analysis Tools. Soft-

ware engineering researchers have become increasingly in-

terested [2] in studying how SATs are used in practice by

developers, and how to increase their level of automation.

Rausch et al. [14] performed an extensive study on the build

failures of 14 projects, finding a frequent association between

build failures and issues reported by SATs (when the latter are

used as a component of continuous integration). Zampetti et

al. [15] found that lack of a consistent coding style across a

project is a frequent source of build failures.

Recent studies focused on the kinds of rule violations

developers are more likely to fix. Liu et al. [16] compared

a large number of fixed and not fixed FindBugs rule violations

across revisions of 730 Java projects. They characterized the

categories of violations that are often fixed, and reported

several situations in which the violations are systematically

ignored. They also concluded that developers disregard most

of FindBugs violations as not being severe enough to be fixed

during development process.

Digkas et al. [17] performed a similar analysis for Sonar-

Qube rules, revealing that a small number of all rules accounts

for the majority of programmer-written fixes. Marcilio et al. [1]

characterized the use of SonarQube in 246 Java projects,

reporting a low resolution rate of issues (around 9% of the

project’s issues have been fixed), and also finding that a small

subset of the rules reveal real design and coding flaws that

developers consider serious. These findings suggest that a fix

generation tool that focuses on a selection of rules is likely

to be highly effective and relevant in practice to real project

developers.

Automatic Fix Suggestions and Program Repair. Several

researchers have developed techniques that propose fix sug-

gestions for rules of the popular FindBugs in different ways:

interactively, with the user exploring different alternative fixes

for the same warning [5]; and automatically, by systematically

generating fixes by mining patterns of programmer-written

fixes [4], [16]. These studies focus on behavioral bugs such

as those in Defects4J [18]—a curated collection of 395 real

bugs of open-source Java projects. In contrast, SpongeBugs

mainly targets rules that characterize so-called code smells—

patterns that may be indicative of poor programming prac-

tices, and mainly encompass design and stylistic aspects. We

focus on these because they are simpler to characterize and

fix “syntactically” but are also the categories of warnings

that developers using SATs are more likely to address and

fix [1], [16], [17]. This focus helps SpongeBugs achieve high

precision and scalability, as well as be practically useful.

The work closest to ours is probably Liu et al.’s study [4],

which presents the AVATAR automatic program repair system.

AVATAR recommends code changes based on the output of

SAT tools. In its experimental evaluation, AVATAR generated

correct fixes for 34 bugs among those of the Defects4J bench-

mark. This suggests that responding to warnings of SATs can

be an effective way to fix some behavioral “semantic” bugs.

While we may run SpongeBugs on Defects4J bugs as well,

AVATAR’s and SpongeBugs’ scopes are mostly complementary

in the kind of design trade-offs they target. Our approach

focuses on “syntactic” design flaws that often admit simple

yet effective fixes, with the main goal of being immediately

and generally useful for the kinds of static analysis flaws that

developers fix more often.

Aftandilian et al. [19] presented an extension of the Open-

JDK compiler that detects potential bugs and recommends

fixes at compile time, based on patterns that are similar to

those used by SATs like FindBugs. Other approaches learn

transformations from examples, using sets of bug fixes [20],

bug reports [21], or source-code editing patterns [22]. We

directly implemented SpongeBugs’ transformations based on

our expertise and the standard recommendations for fixing

warnings from static analysis tools. Even though SpongeBugs

cannot learn new fixing rules at the moment, this remains an

interesting direction for further improving its capabilities.

Behavioral bugs are also the primary focus of techniques for

“automated program repair”, a research area that has grown

considerably in the last decade. The most popular approaches

to automated program repair are mainly driven by dynamic

analysis (i.e., tests) [23], [24] and targets generic bugs. In

contrast, SpongeBugs’ approach is based on static code-

transformation techniques, which makes it of more limited

scope but also more easily and widely applicable.

III. SPONGEBUGS: APPROACH AND IMPLEMENTATION

SpongeBugs provides fix suggestions for violations of se-

lected rules that are checked by SonarQube and SpotBugs.

Section III-A discusses how we selected the rules to check

and suggest fixes for. SpongeBugs works by means of source-

to-source transformations, implemented as we outline in Sec-

tion III-B.

A. Rule Selection

One key design decision for SpongeBugs is which static

code analysis rules it should target. Crucially, SATs are prone

to generating a high number of false positives [25]. To avoid

creating fixes to spurious warnings, we base our design on the

assumption that rules whose violations are frequently fixed

by developers are more likely to correspond to real issues of

practical relevance [1], [16].

We collected and analyzed the publicly available datasets

from three previous studies that explored developer behavior

in response to output from SonarQube [1], [17] and Find-

Bugs [16]. Based on this data, we initially selected the top

50% most frequently fixed rules, corresponding to 156 rules,

extended with another 10 rules whose usage was not studied

in the literature but appear to be widely applicable.

Then, we went sequentially through each rule, starting from

the most frequently fixed ones, and manually selected those

that are more amenable to automatic fix generation. The main

criterion to select a rule is that it should be possible to define a

syntactic fix template that is guaranteed to remove the source

of warning without obviously changing the behavior. This led

to discarding all rules that are not modular, that is, that require

changes that affect clients in any files. An example is the

rule Method may return null, but its return type is @Nonnull.1

1https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#
np-method-may-return-null-but-is-declared-nonnull-np-nonnull-return-violation

Although conceptually simple, the fix for a violation of this

rule entails a change in a method’s signature that weakens

the guarantees on its return type. This is impractical, since

we would need to identify and check every call of this

method, and potentially introduces a breaking change [26].

We also discarded rules when automatically generating a

syntactic fix would be cumbersome or would require additional

design decisions. An example is the rule Code should not

contain a hard coded reference to an absolute pathname, whose

recommended solution involves introducing an environment

variable. To provide an automated fix for this violation, our

tool would need an input from developers, since pathnames are

context specific; it would also need access to the application’s

execution environment, which is clearly beyond the scope of

the source code under analysis.

We selected the top rules (in order of how often developers

fix the corresponding warnings) that satisfy these feasibility

criteria, leading to the 11 rules listed in Table I. Note that

SonarQube and SpotBugs rules largely overlap, but the same

rule may be expressed in slightly different terms in either tool.

Since SonarQube includes all 11 rules we selected, whereas

SpotBug only includes 7 of them, we use SonarQube rule

names2 for uniformity throughout the paper.

Consistently with SonarQube’s classification of rules, we

assign an identifier to each rule according to whether it

represents a bug (B1 and B2) or a code smell (C1–C9). While

the classification is fuzzy and of limited practical usefulness,

note that the most of our rules are code smells in accordance

with the design decisions behind SpongeBugs.

TABLE I: The 11 static code analysis rules that SpongeBugs

can provide fix suggestions for. The rule descriptions are based

on SonarQube’s, which classifies rules in (B)ugs and (C)ode

smells.

ID RULE DESCRIPTION

B1 Strings and boxed types should be compared using equals()

B2 BigDecimal(double) should not be used

C1 String literals should not be duplicated

C2 String functions use should be optimized for single characters

C3 Strings should not be concatenated using + in a loop

C4 Parsing should be used to convert strings to primitive types

C5 Strings literals should be placed on the left-hand side
when checking for equality

C6 Constructors should not be used to instantiate String,
BigInteger, BigDecimal, and primitive wrapper classes

C7 entrySet() should be iterated when both key and value are
are needed

C8 Collection.isEmpty() should be used to test for emptiness

C9 Collections.EMPTY_LIST, EMPTY_MAP, and EMPTY_SET

should not be used

Rules C1 and C5 were selected indirectly on top of the

feasibility criteria discussed above (which were used directly

to select the other 9 rules). We selected rule C1 because

it features very frequently among the open issues of many

2https://rules.sonarsource.com/java

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#np-method-may-return-null-but-is-declared-nonnull-np-nonnull-return-violation
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#np-method-may-return-null-but-is-declared-nonnull-np-nonnull-return-violation
https://rules.sonarsource.com/java

projects; its fixes are somewhat challenging since they involve

multiple lines and the insertion of a constant. We selected rule

C5 because it can be fixed in conjunction with fixes to rule B1

(see Listing 1), making the code shorter while also avoiding

NullPointerException from being thrown.

- if (render != null && render != "")

+ if (!"".equals(render))

Listing 1: Fixes for rules B1 (Strings and boxed types

should be compared using equals()) and C5 (Strings

literals should be placed on the left-hand side when

checking for equality) applied in conjunction.

B. How SpongeBugs Works

SpongeBugs looks for rule violations and builds fix sugges-

tions in three steps:

1) Find textual patterns that might represent a rule violation.

2) For every match identified in step 1, perform a full search

in the AST looking for rule violations.

3) For every match confirmed in step 2, instantiate the

rule’s fix templates—producing the actual fix for the rule

violation.

We implemented SpongeBugs using Rascal [27], a domain-

specific language for source code analysis and manipulation.

Rascal facilitates several common meta-programming tasks,

including a first-class visitor language constructor, advanced

pattern matching based on concrete syntax, and defining

templates for code generation. We used Rascal’s Java 8

grammar [28], which entails that our evaluation (Section V)

is limited to Java projects that can be built using this version

of the language.

We illustrate how SpongeBugs’s three steps work for rule

C8 (Collection.isEmpty() should be used to test for empti-

ness). Step 1 performs a fast, but potentially imprecise, search

that is based on some textual necessary conditions for a rule

to be triggered. For rule C8, step 1 looks for files that import

some package in java.util and include textual patterns that

indicate a comparison of size() with zero or one—as shown

in Listing 2.

bool shouldContinueWithASTAnalysis(loc fileLoc) {

javaFileContent = readFile(fileLoc);

return findFirst(javaFileContent, "import java.util.") != -1 &&

hasSizeComparison(javaFileContent);

}

bool hasSizeComparison(str javaFileContent) {

return findFirst(javaFileContent, ".size() \> 0") != -1 ||

findFirst(javaFileContent, ".size() \>= 1") != -1 ||

findFirst(javaFileContent, ".size() != 0") != -1 ||

findFirst(javaFileContent, ".size() == 0") != -1;

}

Listing 2: Implementation of step 1 for rule C8: find textual

patterns that might represent a violation of rule C8.

Step 1 may report false positives: for rule C8, the compar-

ison involving size() may not actually involve an instance

of a collection but use a class that does not offer a method

isEmpty(). Step 2 is more precise, but also more computation-

ally expensive, as it performs a full AST matching; therefore,

it is only applied after step 1 identifies code that has a high

likelihood of being rule violations. In our example of rule C8,

step 2 checks that the target of the possibly offending call to

size() is indeed of type Collection—as shown in Listing 3.

case (EqualityExpression)

‘<ExpressionName beforeFunc>.size() == 0‘: {

if (isBeforeFuncReferencingACollection(beforeFunc,

mdl, unit)) {

Listing 3: Partial implementation of step 2 for rule C8: full

AST search for rule violations.

Whenever step 2 returns a positive match, step 3 executes

and finally generate a patch to fix the rule violation. Step 3’s

generation is entirely based on code-transformation templates

that modify the AST matched in step 2 as appropriate accord-

ing to the rule’s semantics. For rule C8, step 3’s template is

straightforward: replace the comparison of size()== 0 with a

call to isEmpty()—its implementation is in Listing 4. (Step 3

for rule C8 also handles other patterns not shown in this

example for brevity.)

refactoredExp = parse(#Expression, "<beforeFunc>.isEmpty()");

Listing 4: Implementation of step 3 for rule C8: instantiate

the fix templates corresponding to the violated rule.

IV. EMPIRICAL EVALUATION OF SPONGEBUGS:

EXPERIMENTAL DESIGN

The general goal of this research is to investigate the use

of techniques for fixing suggestions to address the warnings

generated by static code analysis tools. Section IV-A presents

the research questions answered by SpongeBugs’s empirical

evaluation, which is based on 15 open-source projects selected

using the criteria we present in Section IV-B. We submitted the

fix suggestions built by SpongeBugs as pull requests according

to the protocol discussed in Section IV-C. All data created in

this study and our tool implementation are available:

https://github.com/dvmarcilio/spongebugs

A. Research Questions

The empirical evaluation of SpongeBugs, whose results

are described in Section V, addresses the following research

questions, which are based on the original motivation behind

this work: automatically providing fix suggestions that helps

improve the practical usability of SATs.

RQ1. How widely applicable is SpongeBugs?

The first research question looks into how many rule

violations SpongeBugs can detect and suggest a fix for.

RQ2. Does SpongeBugs generate fixes that are acceptable?

The second research question evaluates SpongeBugs’s

effectiveness by looking into how many of its fix sug-

gestions were accepted by project maintainers.

RQ3. How efficient is SpongeBugs?

The third research question evaluates SpongeBugs’s scal-

ability in terms of running time on large code bases.

https://github.com/dvmarcilio/spongebugs

B. Selecting Projects for the Evaluation

In order to evaluate SpongeBugs in a realistic context, we

selected 15 well-established open-source Java projects that

can be analyzed with SonarQube or SpotBugs. Three projects

were natural choices: the SonarQube and SpotBugs projects

are obviously relevant for applying their own tools; and the

Eclipse IDE project is a long-standing Java project one of

whose lead maintainers recently requested3 help with fixing

SonarQube issues. We selected the other twelve projects, fol-

lowing accepted best practices [29], among those that satisfy

all of the following:

1) the project is registered with SonarCloud (a cloud service

that can be used to run SonarQube on GitHub projects);

2) the project has at least 10 open issues related to violations

of at least one of the 11 rules handled by SpongeBugs

(see Table I);

3) the project has at least one fixed issue;

4) the project has at least 10 contributors;

5) the project has commit activity in the last three months.

TABLE II: The 15 projects we selected for evaluating Sponge-

Bugs. For each project, the table report its DOMAIN, and data

from its GitHub repository: the number of STARS, FORKS,

CONTRIBUTORS, and the size in lines of code. Since Eclipse’s

GitHub repository is a secondary mirror of the main repository,

the corresponding data may not reflect the project’s latest state.

PROJECT DOMAIN STARS FORKS CONTRIBUTORS LOC
a

Eclipse IDE IDE 72 94 218 743 K

SonarQube Tool 3,700 1,045 91 500 K

SpotBugs Tool 1,324 204 80 280 K

atomix Framework 1,650 282 30 550 K

Ant Media Server Server 682 878 16 43 K

cassandra-reaper Tool 278 125 48 88.5 K

database-rider Test 182 45 14 21 K

db-preservation-toolkit Tool 26 8 10 377 K

ddf Framework 95 170 131 2.5 M

DependencyCheck Security 1,697 464 117 182 K

keanu Math 136 31 22 145 K

matrix-android-sdk Framework 170 91 96 61 K

mssql-jdbc Driver 617 231 40 79 K

Payara Server 680 206 66 1.95 M

primefaces Framework 1,043 512 110 310 K

a Non-comment non-blank lines of code calculated from Java source files
using cloc (https://github.com/AlDanial/cloc)

C. Submitting Pull Requests With Fixes Made by SpongeBugs

After running SpongeBugs on the 15 projects we selected,

we tried to submit the fix suggestions it generated as pull re-

quests (PRs) in the project repositories. Following suggestions

to increase patch acceptability [30], before submitting any

pull requests we approached the maintainers of each project

through online channels (GitHub, Slack, maintainers’ lists,

or email) asking whether pull requests were welcome. (The

only exception was SonarQube itself, since we did not think

it was necessary to check that they are OK with addressing

issues raised by their own tool.) When the circumstances

3https://twitter.com/vogella/status/1096088933144952832

allowed so, we were more specific about the content of our

potential PRs. For example, in the case of mssql-jdbc, we also

asked: “We noticed on the Coding Guidelines that new code

should pass SonarQube rules. What about already committed

code?”, and mentioned that we found the project’s dashboard

on SonarCloud. However, we never mentioned that our fixes

were generated automatically—but if the maintainers asked us

whether a fix was automatic generated, we openly confirmed it.

Interestingly, some developers also asked for a possible IDE

integration of SpongeBugs as a plugin, which may indicate

interest. We only submitted pull requests to the projects that

replied with an answer that was not openly negative.

While the actual code patches in submitted pull requests

were generated automatically by SpongeBugs, we manually

added information to present them in a way that was accessible

by human developers—following good practices that facilitate

code reviews [31]. We paid special attention to four aspects:

1) change description, 2) change scope, 3) composite changes,

and 4) nature of the change. To provide a good change

description and clarify the scope of a change, we always

mentioned which rule a patch is fixing—also providing a

link to a textual description of the rule. In a few cases

we wrote a more detailed description to better explain why

the fix made sense, and how it followed recommendations

issued by the project maintainers. For example, mssql-jdbc

recommends to “try to create small alike changes that are easy

to review”; we tried to follow this guideline in all projects. To

keep our changes within a small scope, we separated fixes

to violations of different rules into different pull requests;

in case of fixes touching several different modules or files,

we further partitioned them into separate pull requests per

module or per file. This was straightforward thanks to the

nature of the fix suggestions built by SpongeBugs: fixes are

mostly independent, and one fix never spans multiple classes.

TABLE III: Responses to our inquiries about whether it is OK

to submit a pull request to each project, and how many pull

requests were eventually submitted and approved.

PULL REQUESTS

PROJECT OK TO SUBMIT? SUBMITTED APPROVED

Eclipse IDE Positive 9 9

SonarQube – 1 1

SpotBugs Neutral 1 1

atomix Positive 2 2

Ant Media Server Positive 3 3

database-rider Positive 4 4

ddf Positive 3 2

DependencyCheck Neutral 1 1

keanu Positive 3 0

mssql-jdbc Positive 1 1

Payara Positive 6 6

primefaces Positive 4 4

cassandra-reaper No reply – –

db-preservation-toolkit No reply – –

matrix-android-sdk No reply – –

Total: 38 34

https://github.com/AlDanial/cloc
https://twitter.com/vogella/status/1096088933144952832

We consider a pull request approved when reviewers indi-

cate so in the GitHub interface. Although the vast majority of

the approved PRs were merged, two of them were approved

but not merged yet at the time of writing. Since merging

depends on other aspects of the development process4 that are

independent of the correctness of a fix, we do not distinguish

between pull requests that were approved and those that were

approved but not merged yet.

The reviewing process may approve a patch with or without

modifications. For each patch generated by SpongeBugs and

approved we record whether it was approved with or without

modifications.

V. EMPIRICAL EVALUATION OF SPONGEBUGS:

RESULTS AND DISCUSSION

The results of our empirical evaluation of SpongeBugs

answer the three research questions presented in Section IV-A.

For uniformity, all experiments target the 12 projects whose

maintainers were accepting of pull requests fixing static anal-

ysis warnings (top portion of Table III).

A. RQ1: Applicability

To answer RQ1 (“How widely applicable is SpongeBugs?”),

we ran SonarQube on each project, counting the warnings

triggering a violations of any of the 11 rules SpongeBugs

handles. Then, we ran SpongeBugs and applied all its fix sug-

gestions. Finally, we ran SonarQube again on the fixed project,

counting how many warnings had disappeared. Table IV shows

the results of these experiments. Overall, SpongeBugs’s fix

suggestions remove the source of 81% of the all warnings

violating the rules we considered in this research.

These results justify our decision of focusing on a limited

number of rules. In particular, the three rules (C3, C4, C9) with

the lowest percentages of fixing are responsible for less than

6% of the triggered violations. In contrast, a small number of

rules triggers the vast majority of violations, and SpongeBugs

is extremely effective on these rules.

To elaborate, consider rule C9: (Collections.EMPTY_LIST,

EMPTY_MAP, and EMPTY_SET should not be used). SpongeBugs

only looks for return statements that violate this rule, since

it is simpler to check whether the return type of a method is

a collection, rather than to track local variable declarations—

which might depend on other local variables and constants.

Listing 5 shows a fix for rule C9.

A widely applicable kind of suggestion are those for vi-

olations of rule C1 (String literals should not be duplicated),

shown in Listing 6, which SpongeBugs can successfully fix in

90% of the cases in our experiments. Generating automatically

these suggestions is quite challenging. First, fixes to violations

of rule C1 change multiple lines of code, and add a new

constant. This requires to automatically come up with a

descriptive name for the constant, based on the content of

the string literal. The name must comply with Java’s rules for

identifiers (e.g., it cannot start with a digit). The name must

4One case is a pull request to Ant Media Server that was approved but
violates the project’s constraint that new code must be covered by tests.

also not clash with other constant and variable names that

are in scope. SpongeBugs’s fix suggestions can also detect

whether there is already another string constant with the same

value—reusing that instead of introducing a duplicate.

public Collection<Binding> getSequencesFor(ParameterizedCommand

→֒ command) {

ArrayList<Binding> triggers = bindingsByCommand.get(command);

- return (Collection<Binding>) (triggers == null ?

→֒ Collections.EMPTY_LIST : triggers.clone());

+ return (Collection<Binding>) (triggers == null ?

→֒ Collections.emptyList() : triggers.clone());

}

Listing 5: Fix suggestion for a violation of rule C9

(Collections.EMPTY_LIST, EMPTY_MAP, and EMPTY_SET

should not be used) in project Eclipse IDE.

public class AccordionPanelRenderer extends CoreRenderer {

+ private static final String FUNCTION_PANEL = "function(panel)";

@@ -130,13 +133,13 @@ public class AccordionPanelRenderer extends

→֒ CoreRenderer {

if (acco.isDynamic()) {

wb.attr("dynamic", true).attr("cache", acco.isCache());

}

wb.attr("multiple", multiple, false)

- .callback("onTabChange", "function(panel)",

→֒ acco.getOnTabChange())

- .callback("onTabShow", "function(panel)", acco.getOnTabShow())

- .callback("onTabClose", "function(panel)", acco.getOnTabClose());

+ .callback("onTabChange", FUNCTION_PANEL, acco.getOnTabChange())

+ .callback("onTabShow", FUNCTION_PANEL, acco.getOnTabShow())

+ .callback("onTabClose", FUNCTION_PANEL, acco.getOnTabClose());

Listing 6: Fix suggestion for a violation of rule C1 (String

literals should not be duplicated) in project primefaces.

We also highlight that our approach is able to perform dis-

tinct transformations in the same file and statement. Listing 7

shows the combination of a fix for rule C1 (String literals

should not be duplicated) applied in conjunction with a fix for

rule C5 (Strings literals should be placed on the left side when

checking for equality).

public class DataTableRenderer extends DataRenderer {

+ private static final String BOTTOM = "bottom";

- if (hasPaginator &&

→֒ !paginatorPosition.equalsIgnoreCase("bottom")) {

+ if (hasPaginator && !BOTTOM.equalsIgnoreCase(paginatorPosition))

→֒ {

Listing 7: Fix suggestion for a violation of rules C1 and C5

in the same file and statement found in project primefaces.

Another encouraging result is the negligible number of fix

suggestions that failed to compile: only two among all those

generated by SpongeBugs. We attribute this low number to

our approach of refining SpongeBugs’s implementation with

the support of a curated and growing suite of examples to

test against. We also note that one of the two fix suggestions

that didn’t compile is likely a false positive (reported by

SonarQube). On line 6 of Listing 8, the string literal "format"

is replaced by the constant OUTPUT_FORMAT which is only

accessible within class CliParser using its qualified name

ARGUMENT.OUTPUT_FORMAT. However, SonarQube’s warning

TABLE IV: For each project and each rule checked by SonarQube, the table reports two numbers x/y: x is the number of

warnings violating that rule found by SonarQube on the original project; y is the number of warnings that have disappeared

after running SpongeBugs on the project and applying all its fix suggestions for the rule. The two rightmost columns summarize

the data per project (TOTAL), and report the percentage of warnings that SpongeBugs successfully fixed (FIXED %). The two

bottom rows summarize the data per rule in the same way.

PROJECT B1 B2 C1 C2 C3 C4 C5 C6 C7 C8 C9 TOTAL FIXED %

Eclipse IDE 44/5 13/13 214/199 4/4 11/8 18/3 189/176 15/11 – 159/97 102/32 769/548 71%

SonarQube – – 104/81 – – – 7/7 – – – – 111/88 79%

SpotBugs 12/8 1/0 289/247 2/1 1/0 11/1 141/125 – – 30/20 – 487/402 82%

atomix 1/1 – 57/55 – – – 9/9 – – 1/0 2/0 70/65 93%

Ant Media Server – – 30/30 1/0 1/0 2/1 3/3 3/0 – 4/2 4/2 48/38 79%

database-rider – – 5/5 5/5 – – 2/2 – 1/1 1/1 – 14/14 100%

ddf 1/0 – 104/97 – 1/0 – 88/86 – 1/1 45/33 8/1 248/218 88%

DependencyCheck – – 61/51 10/4 – – 3/3 – – 4/2 – 78/60 77%

keanu 1/1 – – – – – 4/4 – 12/11 5/3 – 22/19 86%

mssql-jdbc 4/1 – 314/274 14/1 – 7/0 58/58 2/0 – 14/11 – 413/345 83%

Payara 39/36 – 1,413/1,305 213/163 66/14 114/10 1,830/1,620 200/88 50/44 438/265 58/20 4,421/3,565 81%

primefaces – – 336/286 2/0 9/6 3/3 336/329 – 1/1 1/0 4/1 692/626 90%

TOTAL 102/52 14/13 2,927/2,630 251/178 89/28 155/18 2,670/2,422 220/99 65/58 702/434 178/56 7,373/5,988 –

FIXED % 51% 93% 90% 71% 31% 12% 91% 45% 89% 62% 31% 81% –

does not have this information, as it just says: “Use already-

defined constant OUTPUT_FORMAT instead of duplicating its

value here”.

1 public final class CliParser {

2

3 - final Option outputFormat =

→֒ Option.builder(ARGUMENT.OUTPUT_FORMAT_SHORT)

4 - .argName("format").hasArg().longOpt(ARGUMENT.OUTPUT_FORMAT)

5 + final Option outputFormat =

→֒ Option.builder(ARGUMENT.OUTPUT_FORMAT_SHORT)

6 + .argName(OUTPUT_FORMAT).hasArg().longOpt(ARGUMENT.OUTPUT_FORMAT)

7

8 public static class ARGUMENT {

9 public static final String OUTPUT_FORMAT = "format";

10 }

11 }

Listing 8: Example of an incorrect fix due to a false

positive violation of rule C1. Line 6 references constant

OUTPUT_FORMAT which is not available as an unqualified

name.

B. RQ2: Effectiveness and Acceptability

As discussed in Section Section IV-C, we only submitted

pull requests after informally contacting project maintainers

asking to express their interest in receiving fix suggestions for

warnings reported by SATs. As shown in Table III, project

maintainers were often quite welcoming of contributions with

fixes for SATs violations, with 9 projects giving clearly

positive answers to our informal inquiries. For example an Ant

Media Server maintainer replied “Absolutely, you’re welcome

to contribute. Please make your pull requests”. A couple of

projects were not as enthusiastic but still available, such as

a maintainer of DependencyCheck who answered “I’ll be

honest that I obviously haven’t spent a lot of time looking at

SonarCloud since it was setup. . . That being said – PRs are

always welcome”. Even those that indicated less interest in

pull requests ended up accepting most fix suggestions. This

indicates that projects and maintainers that do use SATs are

also inclined to find valuable the fix suggestions in response

to their warnings. We received no reply from 3 projects, and

hence we did not submit any pull request to them (and we

excluded them from the rest of the evaluation).

In order to answer RQ2 (“Does SpongeBugs generate

fixes that are acceptable?”), we submitted 38 pull requests

containing 920 fixes for the 12 projects that responded our

question on whether fixes were of interest for the project. We

did not submit pull requests with all fix suggestions (more than

5,000) since we did not want to overwhelm the maintainers.

Instead, we sampled broadly (randomly in each project) while

trying to select a diverse collection of fixes.

Overall, 34 pull requests were accepted, some after discus-

sion and with some modifications. Table III breaks down this

data by project. The non-accepted pull requests were: 3 in

project keanu that were ignored; and 1 in project ddf where

maintainers argued that the fixes were mostly stylistic. In terms

of fixes, 775 (84%) of all 920 submitted fixes were accepted;

740 (95%) of them were accepted without modifications.

How to turn these measures into a precision measure

depends on what we consider a correct fix: one that removes

the source of warnings (precision nearly 100%, as only two

fix suggestions were not working), one that was accepted in

a pull request (precision: 84%), or one what was accepted

without modifications (precision: 740/920 = 80%). Similarly,

measures of recall depend on what we consider the total

amount of relevant fixes.

An aspect that we did not anticipate is how policies about

code coverage of newly added code may impact whether fix

suggestions are accepted. At first we assumed our transfor-

mations would not trigger test coverage differences. While

this holds true for single-line changes, it may not be the

case for fixes that introduce a new statement, such as those

for rule C1 (String literals should not be duplicated), rule C3

(Strings should not be concatenated using + in a loop), and

some cases of rule C7 (entrySet() should be iterated when

both key and value are needed). For example, the patch shown

in Listing 9 was not accepted because the 2 added lines were

not covered by any test. One pull request to Ant Media Server

which included 97 fixes in 20 files was not accepted due to

insufficient test coverage of some added statements.

public class TokenServiceTest {

+ private static final String STREAMID = "streamId";

- token.setStreamId("streamId");

+ token.setStreamId(STREAMID);

Listing 9: The lines added by this fix were flagged as not

covered by any existing tests.

Sometimes a fix’s context affects whether it is readily

accepted. In particular, developers tend to insist that changes

be applied so that the overall stylistic consistency of the whole

codebase is preserved. Let’s see two examples of this.

Listing 10 fixes three violations of rule C2; a reviewer asked

if line 3 should be modified as well to use a character ’*’

instead of the single-character string "*":

“Do you think that for consistency (and maybe

another slight performance enhancement) this line

should be changed as well?”

1 - if (pattern.indexOf("*") != 0 && pattern.indexOf("?") != 0 &&

→֒ pattern.indexOf(".") != 0) {

2 + if (pattern.indexOf(’*’) != 0 && pattern.indexOf(’?’) != 0 &&

→֒ pattern.indexOf(’.’) != 0) {

3 pattern = "*" + pattern;

4 }

Listing 10: Fix suggestion for a violation of rule C2 that

introduces a stylistic inconsistency.

The pull request was accepted after a manual modification.

Note that we do not count this as a modification to one of our

fixes, as the modification was in a line of code other than the

one we fixed.

Commenting on the suggested fix in Listing 11, a reviewer

asked:

“Although I got the idea and see the advantages on

refactoring I think it makes the code less readable

and in some cases look like the code lacks a stan-

dard, e.g one may ask why only this map entry is a

constant?”

+ private static final String CASE_SENSITIVE_TABLE_NAMES =

→֒ "caseSensitiveTableNames";

putIfAbsent(properties, "batchedStatements", false);

putIfAbsent(properties, "qualifiedTableNames", false);

- putIfAbsent(properties, "caseSensitiveTableNames", false)

+ putIfAbsent(properties, CASE_SENSITIVE_TABLE_NAMES, false);

putIfAbsent(properties, "batchSize", 100);

putIfAbsent(properties, "fetchSize", 100);

putIfAbsent(properties, "allowEmptyFields", false);

Listing 11: Fix suggestion for a violation of rule C3 that

introduces a stylistic inconsistency.

This fix was declined in project database-rider, even though

similar ones were accepted in other projects (such as Eclipse)

after the other string literals were extracted as constants in a

similar way.

Sometimes reviewers disagree on their opinion about pull

requests. For instance, we received four diverging reviews

from four distinct reviewers about one pull request containing

two fixes for violations of rule C3 in project primefaces.

One developer argued for rejecting the change, others for

accepting the change with modifications (with each reviewer

suggesting a different modification), and others still arguing

against other reviewers’ opinions. These are interesting cases

that may deserve further research, especially because several

projects require at least two reviewers to agree to approve a

change.

Sometimes fixing a violation is not enough [5]. Developers

may not be completely satisfied with the fix we generate, and

may request changes. In some initial experiments, we received

several similar modification requests for fix suggestions to

violations of rule C7 (entrySet() should be iterated when

both key and value are needed); in the end, we changed the

way the fix is generated to accommodate the requests. For

example, the fix in Listing 12 received the following feedback

from maintainers of Eclipse:

“For readability, please assign entry.getKey() to

the menuElement variable”

- for (MMenuElement menuElement : new

→֒ HashSet<>(modelToContribution.keySet())) {

- if (menuElement instanceof MDynamicMenuContribution) {

+ for (Entry<MMenuElement, IContributionItem> entry :

→֒ modelToContribution.entrySet()) {

+ if (entry.getKey() instanceof MDynamicMenuContribution) {

Listing 12: Fix suggestion for a violation of rule C7

generated in a preliminary version of SpongeBugs.

We received practically the same feedback from developers

of Payara, which prompted us to modify how SpongeBugs

generates fix suggestions for violations of rule C7. Listing 13

shows the fixed suggestion with the new template. All fixes

generated using this refined fix template, which we used in

the experiments reported in this paper, were accepted by the

developers without modifications.

- for (MMenuElement menuElement : new

→֒ HashSet<>(modelToContribution.keySet())) {

+ for (Entry<MMenuElement, IContributionItem> entry :

→֒ modelToContribution.entrySet()) {

+ MMenuElement menuElement = entry.getKey();

if (menuElement instanceof MDynamicMenuContribution) {

Listing 13: Fix suggestion for a violation of rule C7

generated in the final version of SpongeBugs.

Overall, SpongeBugs’s fix suggestions were often found of

high enough quality perceived to be accepted—many times

without modifications. At the same time, developers may

evaluate the acceptability of a fix suggestions within a broader

context, which includes information and conventions that are

not directly available to SpongeBugs or any other static code

analyzer. Whether to enforce some rules may also depend on a

developer’s individual preferences; for example one developer

remarked that fixes for rule C5 (Strings literals should be

placed on the left side when checking for equality) are “style

preferences”. The fact that many of such fix suggestions

were still accepted is additional evidence that SpongeBugs’s

approach was generally successful.

C. RQ3: Performance

To answer RQ3 (“How efficient is SpongeBugs?”), we

report some runtime performance measures of SpongeBugs

on the projects. All experiments ran on a Windows 10 laptop

with an Intel-i7 processor and 16 GB of RAM. We used

Rascal’s native benchmark library5 to measure how long our

transformations take to run on the projects considered in Ta-

ble IV. Table V show the performance outcomes. For each of

the measurements in this section, we follow recommendations

on measuring performance [32]: we restart the laptop after

each measurement, to avoid any startup performance bias (i.e.,

classes already loaded); and also provide summary descriptive

statistics on 5 repeated runs of SpongeBugs.

TABLE V: Descriptive statistics summarizing 5 repeated runs

of SpongeBugs. Time is measured in minutes.

RUNNING TIME

PROJECT FILES ANALYZED MEAN ST. DEV.

Eclipse IDE 5,282 63.9 m 3.31 m

SonarQube 3,876 25 m 3.23 m

SpotBugs 2,564 26.4 m 2.05 m

Ant Media Server 228 3.8 m 0.15 m

atomix 1,228 8.1 m 0.23 m

database-rider 109 0.8 m 0.04 m

ddf 2,316 29.7 m 3.98 m

DependencyCheck 245 4.9 m 0.13 m

keanu 445 2.6 m 0.1 m

mssql-jdbc 158 14.2 m 0.27 m

Payara 8,156 141.5 m 5 m

primefaces 1,080 11.8 m 0.15 m

Project mssql-jdbc is an outlier due to its relatively low

count of files analyzed with a long measured time. This is

because its files tend to be large—multiple files with more

than 1K lines. Larger files might imply more complex code,

and therefore more complex ASTs, which consequently leads

to more rule applications. To explore this hypothesis we ran

our transformations on a subset of these larger files. As seen in

Table VI, five larger files are responsible for more than 5 min-

utes of running time. Additionally, file dtv takes, on average,

almost 40 seconds (56%) longer than SQLServerBulkCopy;

even though they have roughly the same size, file dtv has

numerous class declarations and methods with more than

300 lines, containing multiple switch, if, and try/catch

statements.

Generating some fix suggestions takes longer than others.

We investigated this aspect more closely in SpotBugs, as

it includes more than a thousand files containing multiple

test cases for the rules it implements. Excluding test files in

src/test/java does not work for SpotBugs, which puts tests

in another location, thus greatly increasing the amount of code

that SpongeBugs analyzes. SpongeBugs takes considerably

longer to run on rules B1, B2/C6, and C1. The main reason is

that step 1 in these rules raises several false positives, which

5http://tutor.rascal-mpl.org/Rascal/Rascal.html#/Rascal/Libraries/util/
Benchmark/benchmark/benchmark.html

TABLE VI: Descriptive statistics summarizing 5 repeated runs

of SpongeBugs on the 5 largest files in projects mssql-jdbc.

Time is measured in seconds.

RUNNING TIME

FILE LOC MEAN ST. DEV.

SQLServerConnection 4,428 116 s 2.4 s

SQLServerResultSet 3,858 99 s 3.8 s

dtv 2,823 106 s 3.1 s

SQLServerBulkCopy 2,529 68 s 5 s

SQLServerPreparedStatement 2,285 64 s 4.8 s

are then filtered out by the more computationally expensive

step 2 (see Section III-B). For example, step 1’s filtering

for rule B1 (Strings and boxed types should be compared

using equals()), shown in Listing 14, is not very restrictive.

One can imagine that several files have a reference to a

String (covered by hasWrapper()) and also use == or !=

for comparison operators. Contrast this to step 1’s filtering

for rule C9 (Collections.EMPTY_LIST. . . should not be used),

shown in Listing 15, which is much more restrictive; as a result

SpongeBugs runs in under 5 seconds for rule C9.

return hasWrapper(javaFileContent) &&

→֒ hasEqualityOperator(javaFileContent);

Listing 14: Violation textual pattern in the implementation

of rule B1

return findFirst(javaFileContent, "Collections.EMPTY") != -1;

Listing 15: Violation textual pattern in the implementation

of rule C9

Overall, we found that SpongeBugs’s approach to fix warn-

ings of SATs is scalable on projects of realistic size. Sponge-

Bugs could be reimplemented to run much faster if it directly

used the output of static code analysis tools, which indicate

precise locations of violations. While we preferred to make

SpongeBugs’s implementation self contained to decouple from

the details of each specific SAT, we plan to explore other

optimizations in future work.

D. Additional Findings

In this section we summarize findings we collected based

on the feedback given by reviews of our pull requests.

Some fixes are accepted without modifications. Some fixes

are uniformly accepted without modifications. For example

those for rule C2 (String function use should be optimized for

single characters), which bring performance benefits and only

involve minor modifications (as shown in Listing 16: change

string to character).

- int otherPos = myStr.lastIndexOf("r");

+ int otherPos = myStr.lastIndexOf(’r’);

Listing 16: Example of a fix for a violation of rule C2.

SAT adherence is stricter in new code. Some projects require

SAT compliance only on new pull requests. This means that

previously committed code represent accepted technical debt.

http://tutor.rascal-mpl.org/Rascal/Rascal.html##/Rascal/Libraries/util/Benchmark/benchmark/benchmark.html
http://tutor.rascal-mpl.org/Rascal/Rascal.html##/Rascal/Libraries/util/Benchmark/benchmark/benchmark.html

For instance, mssql-jdbc’s contribution rules state that “New

developed code should pass SonarQube rules”. A SpotBugs

maintainer also said “I personally don’t check it so seriously. I

use SonarCloud to prevent from adding more problems in new

PR”. Some use SonarCloud not only for identifying violations,

but for test coverage checks.

Fixing violations as a contribution to open source. Almost

all the responses to our questions about submitting fixes

were welcoming—along the lines of help is always welcome.

Since one does not need a deep understanding of a project

domain to fix several SATs’ rules, and the corresponding

fixes are generally easy to review, submitting patches to fix

violations is an approachable way of contributing to open

source development.

Fixing violations induce other clean-code activities. Some-

times developers requested modifications that were not the

target of our fixes. While our transformations strictly resolved

the issue raised by static analysis, developers were aware of

the code as a whole and requested modifications to preserve

and improve code quality.

Fixing issues promotes discussion. While some fixes were

accepted “as is”, others required substantial discussion. We

already mentioned a pull request for primefaces that was

intensely debated by four maintainers. A maintainer even

drilled down on some Java Virtual Machine details that were

relevant to the same discussion. Developers are much more

inclined to give feedback when it is about code they write and

maintain.

VI. LIMITATIONS AND THREATS TO VALIDITY

Some of SpongeBugs’s transformations may violate a

project’s stylistic guidelines [16]. As an example, project

primefaces uses a rule6 about the order of variable dec-

larations within a class that requires that private constants

(private static final) be defined after public constants.

SpongeBugs’s fixes for rule C1 (String literals should not be

duplicated) may violate this stylistic rule, since constants are

added as the first declaration in the class. Another example of

stylistic rule that SpongeBugs may violate is one about empty

lines between statements7. Overall, these limitations appear

minor, and it should not be difficult to tweak SpongeBugs’s

implementation so that it fixes comply with additional stylistic

rules.

Static code analysis tools are a natural target for fix sug-

gestion generation, as one can automatically check whether a

transformation removes the source of violation by rerunning

the static analyzer [24]. In the case of SonarCloud, which

runs in the cloud, the appeal of automatically generating fixes

is even greater, as any technique can be easily scaled to

benefit a huge numbers of users. We checked the applicability

6http://checkstyle.sourceforge.net/apidocs/com/puppycrawl/tools/
checkstyle/checks/coding/DeclarationOrderCheck.html

7http://checkstyle.sourceforge.net/config_whitespace.html#
EmptyLineSeparator

of SpongeBugs on hundreds of different examples, but there

remain cases where our approach fails to generate a suitable

fix suggestions. There are two reasons when this happens:

1) Implementation limitations. One current limitation of

SpongeBugs is that its code analysis is restricted to a

single file at a time, so it cannot generate fixes that depend

on information in other files. Another limitation is that

SpongeBugs does not not analyze methods’ return types.

2) Restricted fix templates. While manually designed tem-

plates can be effective, the effort to implement them can

be prohibitive [4]. With this in mind, we deliberately

avoided implementing templates that were too hard to

implement relative to how often they would have been

useful.

SpongeBugs’s current implementation does not rely on the

output of SATs. This introduces some occasional inconsisten-

cies. as well as cases where SpongeBugs cannot process a

violation reported by a SAT. An example, discussed above, is

rule C9: SpongeBugs only considers violation of the rule that

involve a return statement. These limitations of SpongeBugs

are not fundamental, but reflect trade-offs between efficiency

of its implementation and generality of the technique it im-

plements.

We only ran SpongeBugs on projects that normally used

SonarQube or SpotBugs. Even though SpongeBugs is likely

to be useful also on general projects, we leave a more extensive

experimental evaluation to future work.

VII. CONCLUSIONS

In this work we introduced a new approach and a tool

(SpongeBugs) that finds and repairs violations of rules checked

by static code analysis tools such as SonarQube, FindBugs,

and SpotBugs. We designed SpongeBugs to deal with rule

violations that are frequently fixed in both private and open-

source projects. We assessed SpongeBugs by running it on 12

popular open source projects, and submitted a large portion

(total of 920) of the fixes it generated as pull requests in the

projects. Overall, project maintainers accepted 775 (84%) of

those fixes—most of them (95%) without any modifications.

We also assessed SpongeBugs’s performance, showing that it

scales to large projects (under 10 minutes on projects as large

as half a million LOC). These results suggest that SpongeBugs

can be an effective approach to help programmers fix warnings

issued by static code analysis tools—thus contributing to

increasing the usability of these tools and, in turn, the overall

quality of software systems.

For future work, we envision using SpongeBugs to prevent

violations to static code analysis rules from happening in the

first place. One way to achieve this is by making its function-

ality available as an IDE plugin, which would help developers

in real time. Another approach is integrating SpongeBugs as a

tool in a continuous integration toolchain. We plan to pursue

these directions in future work.

http://checkstyle.sourceforge.net/apidocs/com/puppycrawl/tools/checkstyle/checks/coding/DeclarationOrderCheck.html
http://checkstyle.sourceforge.net/apidocs/com/puppycrawl/tools/checkstyle/checks/coding/DeclarationOrderCheck.html
http://checkstyle.sourceforge.net/config_whitespace.html#EmptyLineSeparator
http://checkstyle.sourceforge.net/config_whitespace.html#EmptyLineSeparator

Acknowledgments. We thank the maintainers for reviewing our

patches and the reviewers for their helpful comments. This was

is partially supported by CNPq (#406308/2016-0).

REFERENCES

[1] D. Marcilio, R. Bonifácio, E. Monteiro, E. Canedo, W. Luz, and
G. Pinto, “Are static analysis violations really fixed?: A closer look at
realistic usage of sonarqube,” in Proceedings of the 27th International

Conference on Program Comprehension, ser. ICPC ’19. Piscataway,
NJ, USA: IEEE Press, 2019, pp. 209–219. [Online]. Available:
https://doi.org/10.1109/ICPC.2019.00040

[2] A. Habib and M. Pradel, “How many of all bugs do we find? a
study of static bug detectors,” in Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering, ser. ASE
2018. New York, NY, USA: ACM, 2018, pp. 317–328. [Online].
Available: http://doi.acm.org/10.1145/3238147.3238213

[3] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why
don’t software developers use static analysis tools to find bugs?”
in Proceedings of the 2013 International Conference on Software

Engineering, ser. ICSE ’13. Piscataway, NJ, USA: IEEE Press,
2013, pp. 672–681. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2486788.2486877

[4] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandè, “Avatar: Fixing
semantic bugs with fix patterns of static analysis violations,” in 2019

IEEE 26th International Conference on Software Analysis, Evolution

and Reengineering (SANER), Feb 2019, pp. 1–12.
[5] T. Barik, Y. Song, B. Johnson, and E. Murphy-Hill, “From quick fixes

to slow fixes: Reimagining static analysis resolutions to enable design
space exploration,” in 2016 IEEE International Conference on Software

Maintenance and Evolution (ICSME), Oct 2016, pp. 211–221.
[6] K. F. Tómasdóttir, M. Aniche, and A. van Deursen, “Why and how

javascript developers use linters,” in 2017 32nd IEEE/ACM International

Conference on Automated Software Engineering (ASE), Oct 2017, pp.
578–589.

[7] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing
the state of static analysis: A large-scale evaluation in open source
software,” in 2016 IEEE 23rd International Conference on Software

Analysis, Evolution, and Reengineering (SANER), vol. 1, March 2016,
pp. 470–481.

[8] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and J. Penix,
“Using static analysis to find bugs,” IEEE Software, vol. 25, no. 5, pp.
22–29, Sep. 2008.

[9] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program

Analysis. Berlin, Heidelberg: Springer-Verlag, 1999.
[10] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,

Techniques, and Tools (2Nd Edition). Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2006.

[11] U. Khedker, A. Sanyal, and B. Karkare, Data Flow Analysis: Theory

and Practice, 1st ed. Boca Raton, FL, USA: CRC Press, Inc., 2009.
[12] S. Cherem, L. Princehouse, and R. Rugina, “Practical memory leak

detection using guarded value-flow analysis,” in Proceedings of the

28th ACM SIGPLAN Conference on Programming Language Design

and Implementation, ser. PLDI ’07. New York, NY, USA: ACM, 2007,
pp. 480–491. [Online]. Available: http://doi.acm.org/10.1145/1250734.
1250789

[13] Y. Sui and J. Xue, “Svf: Interprocedural static value-flow analysis in
llvm,” in Proceedings of the 25th International Conference on Compiler

Construction, ser. CC 2016. New York, NY, USA: ACM, 2016, pp. 265–
266. [Online]. Available: http://doi.acm.org/10.1145/2892208.2892235

[14] T. Rausch, W. Hummer, P. Leitner, and S. Schulte, “An empirical
analysis of build failures in the continuous integration workflows of
java-based open-source software,” in 2017 IEEE/ACM 14th International

Conference on Mining Software Repositories (MSR). IEEE, may 2017.
[Online]. Available: https://doi.org/10.1109/msr.2017.54

[15] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. D.
Penta, “How open source projects use static code analysis tools in
continuous integration pipelines,” in 2017 IEEE/ACM 14th International

Conference on Mining Software Repositories (MSR). IEEE, may 2017.
[Online]. Available: https://doi.org/10.1109/msr.2017.2

[16] K. Liu, D. Kim, T. F. Bissyande, S. Yoo, and Y. Le Traon, “Mining
fix patterns for findbugs violations,” IEEE Transactions on Software

Engineering, pp. 1–1, 2018.

[17] G. Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, and A. Ampat-
zoglou, “How do developers fix issues and pay back technical debt in
the apache ecosystem?” in 2018 IEEE 25th International Conference on

Software Analysis, Evolution and Reengineering (SANER), March 2018,
pp. 153–163.

[18] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database
of existing faults to enable controlled testing studies for java
programs,” in Proceedings of the 2014 International Symposium

on Software Testing and Analysis, ser. ISSTA 2014. New York,
NY, USA: ACM, 2014, pp. 437–440. [Online]. Available: http:
//doi.acm.org/10.1145/2610384.2628055

[19] E. Aftandilian, R. Sauciuc, S. Priya, and S. Krishnan, “Building useful
program analysis tools using an extensible java compiler,” in 2012 IEEE

12th International Working Conference on Source Code Analysis and

Manipulation, Sep. 2012, pp. 14–23.
[20] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and

T. N. Nguyen, “Recurring bug fixes in object-oriented programs,”
in Proceedings of the 32Nd ACM/IEEE International Conference

on Software Engineering - Volume 1, ser. ICSE ’10. New
York, NY, USA: ACM, 2010, pp. 315–324. [Online]. Available:
http://doi.acm.org/10.1145/1806799.1806847

[21] C. Liu, J. Yang, L. Tan, and M. Hafiz, “R2fix: Automatically generating
bug fixes from bug reports,” in 2013 IEEE Sixth International Confer-

ence on Software Testing, Verification and Validation, March 2013, pp.
282–291.

[22] R. Rolim, G. Soares, R. Gheyi, and L. D’Antoni, “Learning quick fixes
from code repositories,” CoRR, vol. abs/1803.03806, 2018. [Online].
Available: http://arxiv.org/abs/1803.03806

[23] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair:
A survey,” IEEE Trans. Software Eng., vol. 45, no. 1, pp. 34–67, 2019.
[Online]. Available: https://doi.org/10.1109/TSE.2017.2755013

[24] M. Monperrus, “Automatic software repair: A bibliography,” ACM

Comput. Surv., vol. 51, no. 1, pp. 17:1–17:24, Jan. 2018. [Online].
Available: http://doi.acm.org/10.1145/3105906

[25] B. Johnson, Y. Song, E. R. Murphy-Hill, and R. W. Bowdidge, “Why
don’t software developers use static analysis tools to find bugs?” in
35th International Conference on Software Engineering, ICSE ’13, San

Francisco, CA, USA, May 18-26, 2013, 2013, pp. 672–681.
[26] A. Brito, L. Xavier, A. Hora, and M. T. Valente, “Why and how Java

developers break APIs,” in 25th International Conference on Software

Analysis, Evolution and Reengineering (SANER), 2018, pp. 255–265.
[27] P. Klint, T. Van Der Storm, and J. Vinju, “Rascal: A domain specific

language for source code analysis and manipulation,” in 2009 Ninth

IEEE International Working Conference on Source Code Analysis and

Manipulation. IEEE, 2009, pp. 168–177.
[28] R. Dantas, A. Carvalho, D. Marcílio, L. Fantin, U. Silva, W. Lucas,

and R. Bonifácio, “Reconciling the past and the present: An empirical
study on the application of source code transformations to automatically
rejuvenate java programs,” in 2018 IEEE 25th International Conference

on Software Analysis, Evolution and Reengineering (SANER), March
2018, pp. 497–501.

[29] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M.
German, and D. Damian, “An in-depth study of the promises
and perils of mining GitHub,” Empirical Software Engineering,
vol. 21, no. 5, pp. 2035–2071, sep 2015. [Online]. Available:
https://doi.org/10.1007/s10664-015-9393-5

[30] Y. Tao, D. Han, and S. Kim, “Writing acceptable patches: An empirical
study of open source project patches,” in 2014 IEEE International

Conference on Software Maintenance and Evolution, Sep. 2014, pp.
271–280.

[31] A. Ram, A. A. Sawant, M. Castelluccio, and A. Bacchelli, “What makes
a code change easier to review: an empirical investigation on code
change reviewability,” in Proceedings of the 2018 ACM Joint Meeting

on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake

Buena Vista, FL, USA, November 04-09, 2018, 2018, pp. 201–212.
[Online]. Available: https://doi.org/10.1145/3236024.3236080

[32] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous java
performance evaluation,” in Proceedings of the 22Nd Annual ACM

SIGPLAN Conference on Object-oriented Programming Systems and

Applications, ser. OOPSLA ’07. New York, NY, USA: ACM, 2007,
pp. 57–76. [Online]. Available: http://doi.acm.org/10.1145/1297027.
1297033

https://doi.org/10.1109/ICPC.2019.00040
http://doi.acm.org/10.1145/3238147.3238213
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://doi.acm.org/10.1145/1250734.1250789
http://doi.acm.org/10.1145/1250734.1250789
http://doi.acm.org/10.1145/2892208.2892235
https://doi.org/10.1109/msr.2017.54
https://doi.org/10.1109/msr.2017.2
http://doi.acm.org/10.1145/2610384.2628055
http://doi.acm.org/10.1145/2610384.2628055
http://doi.acm.org/10.1145/1806799.1806847
http://arxiv.org/abs/1803.03806
https://doi.org/10.1109/TSE.2017.2755013
http://doi.acm.org/10.1145/3105906
https://doi.org/10.1007/s10664-015-9393-5
https://doi.org/10.1145/3236024.3236080
http://doi.acm.org/10.1145/1297027.1297033
http://doi.acm.org/10.1145/1297027.1297033

