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Abstract—Social coding environments have been consistently
growing since the popularization of the contribution model
known as pull-based. This model has facilitated how developers
make their contributions; developers can easily place a few pull
requests without further commitment. Developers without strong
ties to a project, the so-called casual contributors, often make
a single contribution before disappearing. Interestingly, some
studies about the topic use the number of commits made to
identify the casual contributors, while others use the number of
merged pull requests. Does the method used influence the results?
In this paper, we replicate a study about casual contributors that
relied on commits to identify and analyze these contributors. To
achieve this goal, we analyzed the same set of GitHub-hosted
software repositories used in the original paper. By using pull
requests, we found an average of 66% casual contributors (in
comparison to 48.98% when using commits), who were respon-
sible for 12.5% of the contributions accepted (1.73% when using
commits). We used a sample of 442 developers to investigate the
accuracy of the method. We found that 11.3% of the contributors
identified using the pull requests were misclassified (26.2% using
commits). We also evidenced that using pull requests is more
precise for determining the number of contributions, given that
GitHub projects mostly follow the pull-based process. Our results
indicate that the method used for mining contributors’ data has
the potential to influence the results. With this replication, it may
be possible to improve previous results and reduce future efforts
for new researchers when conducting studies that rely on the
number of contributions.

Index Terms—Replication, Open source, Casual contributors

I. INTRODUCTION

Part of the recent growth of Open Source Software (OSS) is
related to the rise of social coding environments, like GitHub.
One key point of GitHub’s success—in addition to its social
features—was the introduction of the pull-based model [1].
In this model, contributors fork a repository and make their
changes independent of each other. When the set of changes is
ready for review, they pull the contribution using a pull request
back to the main repository. Each pull request is reviewed by
project members and may be discussed and revised before a
decision is made about whether it will be merged into the main
repository or not [1], [2].

One crucial point is that pull requests are, ultimately,
composed of commits submitted to a git upstream repository.
This point brings some flexibility to projects that do not want
to completely adhere to the pull request model, enabling them
to adopt different methods to integrate the contributions sub-
mitted via pull requests. For example, while some maintainers

prefer to merge commits via the command line, the Linux
kernel is famous for still using patches sent to the mailing list.1

While this flexibility may benefit practitioners, it poses many
challenges to researchers analyzing data mined from GitHub.
For example, when one chooses to conduct their analysis in the
commit-level, problems related to author disambiguation [3]
may appear. On the other hand, many obstacles arise when
using pull requests [4], such as not considering the pull
requests manually merged or the commits pushed directly to
the upstream repository.

Does the use of pull requests or commits to mine contribu-
tors’ behavior influence the results of an empirical study? To
answer this question, we replicated the study conducted by
Pinto et al. [5] published on SANER 2016 conference, which
investigated the rise of the casual contributor phenomenon,
and the comparised both results. Pinto and his colleagues
define these contributors as those who performed a single
contribution to a given project. However, as briefly discussed
above, the concept of contribution can be misleading when
we consider the pull-based model since a pull request may
have multiple commits. We chose to replicate this particular
topic since this casual contributor phenomenon has recently
gained traction, with researchers studying it from different
angles [6], [7], [5], [8]. Moreover, the nature of this phe-
nomenon makes the results of this study of interest for research
investigating other aspects of OSS communities tied to the
number of contributions (e.g.,quasi-contributions [9], devel-
opers disengagement [10], [11], students participation [12],
women engaging in OSS [13], among many others). All these
studies rely, somehow, on data collected directly from GitHub
public API [14] or existing datasets like GHTorrent [15].
Why is this replication needed? This paper can help re-
searchers to avoid potential threats to validity in their empirical
studies when deciding the approach they will take to analyze
data from repositories. Although other research works high-
lighted that threats in mining repository activities exist [16],
[4], none of them focus on these two particular approaches:
commits and pull requests. In this paper, we bring to light
the differences that may occur when looking at contributions
from different abstraction levels. Given that more projects are
migrating to GitHub and following a pull-based model, and
that many other platforms now offer similar features (e.g.,

1https://kernelnewbies.org/FirstKernelPatch



GitLab, Phabricator, BitBucket), it is essential to understand
the implications of this choice, and how to make the decision
aligned to the goals of the work.

In the context of Software Engineering, a replication con-
sists of repeating the original study by reusing its materials,
design, or analysis procedures [17]. The original paper focused
on obtaining all its data using command line git log utility
to evaluate the contributions. In this replication, however, we
focused only on data available via the GitHub API and stored
at GHTorrent [15]. Using this data while replaying the same
procedure of the original work, we observed our main finding:
the method employed to gather contributors’ data does matter!

We also found about 35% more casual contributors when us-
ing the pull request method. However, we found false-positives
using both methods. Regardless of the method, researchers
need to be cautious when mining contributors’ data.

The main contributions of this paper are: (i) Comparison
between two different ways used to measure the contributing
behavior of casual contributors in OSS projects (commits and
pull requests); (ii) Replication of a study that used the commit
method for identifying casual contributors—we complemented
the analysis using pull requests for the same purpose; (iii)
Discussion about how the two approaches could yield similar
and different results; (iv) A list of lessons learned to help other
researchers gauge which method would better suit their needs.

II. RELATED WORK

A. Casual Contributors

The majority of past empirical studies on the social aspects
of OSS projects and communities has focused on understand-
ing the role of core and peripheral OSS developers [7]. Re-
searchers have often neglected those contributors who do not
seek long-term commitment [5], [18], [6], [19], [8], [20], [21].
However, there is a growing body of knowledge related to the
so-called casual contributors [5]. Other authors use different
terminologies when discussing this phenomenon. For example,
Lee and Carver [7] use the term “one-time-contributor” to
define those contributors who have had exactly one code
contribution—the same defined by Pinto and his colleagues.
“Episodic contributor” is another term—coined by Barcomb et
al. [20]—aimed to define short-term, erratic, and conditional
participation in OSS projects. In this paper, we keep Pinto’s
definition: casual contributors are those contributors who have
had exactly one contribution to an open software project.
We want to explore the differences that may occur when
the concept of “contribution” changes from commit to pull
request.

This “behind the scenes” role is important to OSS projects.
According to the literature [5], [6], casual contributors make
far from only trivial contributions. Pinto et al. [5], for example,
found that more than half of their contributions relate to fixing
bugs, implementing new features, and refactoring existing
code. Furthermore, their contributions are of high quality and
compare to those made by regular contributors [19].

When analyzing the methods of the papers that deal with
casual contributors, we noticed that none of them considered
pull requests when analyzing contributions. Those papers that

studied GitHub contributions [5], [19], [21] conducted their
analysis at commit-level. The other studies only leveraged
data from surveys and interviews [8], [20], or used data from
projects that are not hosted on GitHub [7], [18]—in commit
level. No study investigated this phenomenon from the per-
spective of pull requests. More interestingly, for those studies
that analyzed data from GitHub hosted projects, there is no
discussion about the potential threats of analyzing commits
from projects that potentially accept and merge contributions
via pull request.

B. Replication Studies in Software Engineering

Replications are gaining increasing presence in the research
agenda of software engineering studies, as evidenced by the in-
creasing number of replications published in recent years [22].

Campbell and Stanley [23] argue that experiments need
to be replicated in different contexts, at different times, and
under different conditions before they can produce general-
izable knowledge. Thus, replications can help improve the
understanding of a phenomenon, since the results reported by
one study do not always directly transfer to other contexts [24].

Shull et al. [25] identified two types of replications: (i) exact
replications, when researchers apply the same procedures to
answer the same research questions as closely as possible;
and (ii) conceptual replications, that happens when researchers
investigate the same research question by using a different
experimental procedure.

Guidelines exist to help researchers to conduct replica-
tions [26], [27], [22]. According to Carver et al. [26] a
replication paper should report the research questions, design,
participants, artifacts, context variables, and summary of the
results. We present each in the following section.

III. THE ORIGINAL STUDY

The original paper [5] included the following questions:
RQ1. How common are casual contributors in OSS

projects?
RQ2. What are the characteristics of contributions made

by casual contributors?
RQ3. How do casual contributors and project maintainers

perceive contributions made by casual contributors?
The original study was the first study aimed at gaining an

in-depth understanding of casual contributors, as well as their
benefits and the problems they introduce. RQ1 provided an
overview of the existence of casual contributors in the set
of studied projects. In RQ2, the authors conducted a manual
inspection and a quantitative analysis to understand the casual
contributor’s intention when submitting their contribution. The
authors presented the results of a survey conducted with
casual contributors and maintainers in RQ3, in which they
investigated causal contributors’ motivations, as well as the
benefits and problems associated with their presence.
Design. The original study conducted a quantitative and qual-
itative analysis of data from OSS projects. To select repre-
sentative OSS projects, the authors queried GitHubArchive2

2https://www.gharchive.org/
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to find the most popular projects in terms of the number of
stars. The authors cloned the projects and used git commands
to extract commit logs and file contents. They collected the
qualitative data by surveying 197 casual contributors and 65
project maintainers. To understand the intention of the casual
contributors, they manually categorized 384 contributions by
analyzing commits made by casual contributors.
Projects. The authors selected the top 20 most popular
projects from 16 programming languages: C, C++, Clojure,
CoffeeScript, Erlang, Go, Haskell, Java, JavaScript, Objective-
C, Perl, PHP, Python, Ruby, Scala, and TypeScript. After
curating the dataset by removing projects that were not soft-
ware projects or were not active, the final dataset comprised
275 GitHub Projects. These projects had a total of 73,960
contributors who performed 2,039,376 contributions.
Artifacts. The original study shared the raw data collected.
However, the dataset presents only commit data collected via
git log, making it impossible to analyze pull requests. In
this replication, we created a new dataset, relying on data
obtained directly via GitHub API, and from GHTorrent,3

comprising both pull request and commit data we could
compare the two. As we shall see in Section IV-A2, we made
small modifications in the original methodology to enable pull
request analysis.
Context Variables. According to Basili et al. [28], drawing
general conclusions from empirical studies is difficult because
any process depends on a potentially large number of relevant
context variables. In this replication, we started by selecting
the same set of OSS projects curated in the original study.
Besides using commit data, we complemented the data from
these projects with pull request data.

IV. THE REPLICATION STUDY

In this section, we state our research questions and the
research approach used to collect and analyze data. Similar
to Pinto et al. [5], to collect data from casual contributors, we
conducted a mixed-method approach to quantify the presence
of casual contributors in software projects and qualitatively
inspect the results. Our target population is the same set of
projects collected by the original study. For this study, we
included pull request data.

As mentioned before, in this replication, we kept the first
two research questions of the original study [5]. Since our goal
is to understand whether pull requests could be an interesting
approach to categorize casual contributors’ contributions, our
intention with RQ1 is to assess whether, say, the proportion of
these contributions (using pull requests) is similar to the origi-
nal study (commits). Moreover, in this study, it is important in
RQ2 to evaluate whether the same kind of contributions can
be found using the pull request research method (e.g., since
pull requests can contain more than one commit, contributors
could keep submitting changes to the same pull request until
integrators decide that the contribution is ready to be merged).

In this replication paper, we decided not to replicate RQ3,
because we aim to better understand the method used to

3http://ghtorrent.org

identify the casual contributors, and how that may affect the
main results of the original paper. RQ3 aimed to understand
the perceptions of casual contributors, without considering the
level of granularity analyzed. More concretely, we consider
out of the scope of this work a further understanding of the
benefits or challenges related to contributions made by casual
contributors. We thus focus on the method.

A. Data Collection
1) Curating the corpus of OSS projects: We start our data

collection process by selecting the 275 OSS projects used in
the original study. For each one of these projects, we collected
data about their pull requests (merged and unmerged) and the
commits made to the master branch of the project. We opted
to dismiss the open pull requests, because we cannot predict
the acceptance/rejection of these pull requests.

When conducting the collection process, we noticed that
we would not be able to reuse the complete original dataset
of projects. This happened due to three concerns:
1) projects had less than five pull requests: five OSS
projects are popular but have a small number of pull requests—
as a consequence, fewer contributors—(e.g., LULZLABS/AIR-
CHAT,4).
2) projects were inactive: we detected four projects that were
abandoned by the maintainers (e.g., OSTINELLI/MISULTIN5).
3) projects that do not accept pull requests: three projects
do not use the pull request workflow to receive patches
(e.g.,TORVALDS/LINUX).and CLOJURE/CLOJURESCRIPT,6).

After discarding these projects, we curated a list of
263 active and popular OSS projects that use the pull re-
quest system. Besides removing these OSS projects, we
also merged the commit history of the project TUR-
BOLINKS/TURBOLINKS with the most recent version of it,
TURBOLINKS/TURBOLINKS-CLASSIC. We did this to the his-
tory of the projects, allowing us to consider their pre-migration
pull requests.

2) Curating the contributing metrics: In this study, we
focused on comparing two contributing metrics: commits and
pull requests. To retrieve both commit and pull request data,
we used a GHTorrent snapshot, complemented with data from
GitHub API. This choice sets the stage for a fair comparison
since the data collected for commits and pull requests repre-
sents the same set of contributions in the same time frame
(from the beginning of the project until the collection date:
October 2017).

The data collected for the commits include the author and
date, in addition to lines added, deleted, and the number of
files modified. For the pull requests, we collected the decision
about the pull request (i.e., whether it was merged or not), in
addition to the number of files changed per pull request, lines
added and removed, number of commits, and other related
events (e.g., close, force-push, merge).

After manually investigating some of the pull requests col-
lected, we noticed an interesting behavior. Some contributions

4https://github.com/lulzlabs/AirChat
5https://github.com/ostinelli/misultin
6https://github.com/clojure/clojurescript
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that were part of pull requests flagged as unmerged were in
fact accepted and merged in the repository. This occurred
for at least three reasons: (1) commits had been cherry-
picked, (2) the contribution was squashed into a different
commit, (3) or the contents of the patch were copied to
a separate commit. These false-negative contributions and
proposed approaches to deal with them have been identified
in the software engineering literature [2], [4]. We decided to
apply a conservative version of the set heuristics introduced
by Gousious and colleagues [2], to minimize the effect of
false-negative contributions (i.e., the ones accepted and merged
in the repository codebase with pull requests flagged as
unmerged). The heuristics are the following:

• The presence of commits in the master branch. We
checked whether at least one of the commits associated
with the pull request appears in the master branch of the
target project.

• The use of keywords that suggest merging activities
right after closing the pull requests. The last comment
before closing the pull request was analyzed to verify the
existence of words related to the acceptance of the contri-
bution. The words chosen were based on the heuristic by
Gousios [2] (“pulled,” “pushed,” “integrated”), including
some new ones noticed in our manual analysis (“landed,”
“LGTM,” “cherry pick”).

• The presence of SHAs in the last comment. The latest
comment before the close event contains a commit SHA
identifier (40-characters or a shortened version) that exists
in the project’s master branch.

• The presence of SHAs in the “close” event. By
manually analyzing the pull requests, we noticed that in
some projects the members provided with the commit
SHA in the close events (e.g., ANGULAR/ANGULAR-JS7).
This heuristic was not originally proposed by Gousios et
al. [2], but it helps to identify false-negatives.

Table I provides numeric information about our data. The
data used in this work is available for replication purposes at
the companion website.8 We conducted the data collection in
October 2017. In general, there are around five commits for
every pull request.

B. Data analysis

In this section, we discuss how do we analyze our data.
1) Avoiding false-negatives: The first step in our analysis

was to improve the misclassification of “unmerged” pull
requests. This step is important since we perceived that
although these pull requests appear unmerged, they were
actually merged. After a manual analysis, we noticed that
they were, indeed, merged. We then worked to avoid potential
false-negative pull requests. To determine casual contributors
using the pull request approach, we first applied the heuristics
previously mentioned in Section IV-A2 to all “unmerged” pull
requests. For the cases in which we succeed in identifying
merged contributions in the unmerged sea (61,529 of 143,099

7https://github.com/angular/angular.js/pull/9158
8https://markaumvb.github.io/RENE/

TABLE I: Information about our dataset (per language)

# Pull Requests

Merged Unmerged Total # Commits

C 16,793 5,937 22,730 185,738
C++ 40,253 10,620 50,873 263,603
Clojure 2,914 657 3,571 25,966
CoffeeScript 7,449 2,515 9,964 45,583
Erlang 3,126 787 3,913 41,700
Go 16,604 3,228 19,832 68,867
Haskell 6,049 1,068 7,117 50,936
Java 23,245 5,601 28,846 118,020
JavaScript 33,997 14,458 48,455 131,512
Objective-C 6,813 2,385 9,198 37,923
Perl 2,218 768 2,986 28,965
PHP 24,357 8,268 32,625 142,307
Python 21,324 6,724 28,048 118,406
Ruby 64,101 14,549 78,650 228,909
Scala 17,772 2,923 20,695 88,670
Typescript 6,277 956 7,233 71,675

Total 293,292 81,444 374,736 1,648,780

unmerged pull requests, 42%), we flagged them with the
heuristic that helped us to spot the false-negatives. We then
selected all known merged pull requests and defined the casual
contributors as those with one single pull request accepted.

2) Manual Analysis: As in Pinto’s study [5], we performed
a manual analysis of the data obtained. To answer RQ2, we
investigated the content of the contributions made by casual
contributors to understand their intended goal. To do so, we
selected a statistically significant sample of 384 contributions
(95% confidence and 5% margin of error)) performed in
263 different projects. This sample was randomly selected
considering all the pull requests in our population. For each
contribution, we studied the pull request title and pull request
description and discussion, in addition to the commit message
and code changes. We used Pinto’s categories from the orig-
inal study [5] to classify our pull requests and make a fair
comparison.

Next, we intended to compare the effectiveness of these
two approaches (commits and pull requests). To do so, we
investigated a sample of 442 contributors (95% confidence and
5% margin of error) from our sample. We manually classified
these contributors into casual (when we identified only a single
contribution), non-casual (when the developer had more than
one contribution merged to the repository) or non-contributor
(when no contribution was accepted at all). To analyze the
contributions and assure whether the contribution had been
accepted or not, we carefully investigated the commits made
by the user in the master branch of the project, the pull requests
submitted, and the discussions of the pull request. After manu-
ally classifying the sample, we compared this classification to
the results obtained by using commits and pull requests. Two
researchers performed both manual analyses. They worked
independently and, when necessary, resolved any discrepancies
after a discussion meeting with a third researcher. All the
contributions in the sample had been analyzed and discussed,
and a consensus was reached for all of them.

3) Statistical Analysis: We performed statistical tests to
compare the percentage of casual contributors identified using

https://github.com/angular/angular.js/pull/9158
https://markaumvb.github.io/RENE/


pull requests and commits. After confirming that the data did
not follow a normal distribution for any project—by applying
the Shapiro-Wilk normality test—we applied the Wilcoxon
signed-rank test [29] to compare the percentage of casual
contributors per project using commits and pull requests. We
also applied Cliff’s delta [30], an effect size measure, to
know the mean distance between the samples. The results are
interpreted using the thresholds provided in Romano et al.
[31], i.e.,delta < 0.147 (negligible), delta < 0.33 (small),
delta < 0.474 (medium), and delta >= 0.474 (large).

V. STUDY RESULTS

In this section, we report the results of our replication study,
answering each research question. We also discuss the results
comparing them to the original study.

A. RQ1. How common are casual contributors?

As in the original study, we analyzed the number of
contributions made per contributor in our sample. The his-
tograms presented in Figure 1 show the overall picture of
the number of pull requests made by contributor, considering
all the projects in our sample (contributions per contributor:
median=1, mean=4.6, Q3=2, std. deviation=33.27). Our first
finding sharply aligns with the original study (histogram
on the left of the figure): regardless of the programming
language, few contributors are responsible for the majority of
the pull requests, while most developers perform very few pull
requests. The same is true of the commits approach, where
most contributors just commit once.
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Fig. 1: Distribution of contributions and contributors in the
nalyzed projects. Outliers were removed to ease visualization.

As expected, we noticed that, by using pull requests, we
found a larger (relative) number of not only casual contributors
but also contributions made by these contributors, compared
to the original study.
Contributions per project per programming language.
To better understand the landscape, in Figure 3 we present
an overview of the casual contributors per project in the
form of boxplots (removing the outliers to ease visualization).
Each boxplot represents the data from all projects analyzed,
grouped by their main programming language. One of the first
noticeable observations from this figure is that by using pull
requests the ratio of casual contributors is higher regardless of
the programming language. The difference can be as small as
8.43% (Ruby), or as high 22.16%, which is the case of projects
written in TypeScript. For every project in this particular lan-
guage, we identified a higher percentage of casual contributors
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when using pull requests than when using commits. That is,
the approach that one uses to mine contribution data has a
non-trivial influence on the results.
Overall results. We found that 66.02% of the contributors
of the analyzed projects had a single pull request merged (to
a given project); thus, they had been classified as a casual
contributor. Compared to the number presented in the original
study [5] (48.98%), this represents an increase of ∼35%. To
make a fair comparison, the percentage of casual contributors
found analyzing commits for the same sample and period used
for the pull request analysis (until October 2017) was 52.88%
at the commit level. Thus, the difference of analyzing pull
requests is far from negligible (∼25%).
At project level. By looking deeper—at project level—at
the extremes of our sample we found nine projects with
more than 90% casual contributors. On the other side of the
spectrum, we found 18 projects with less than 50% casual
contributors (two of them with less than 35%). This finding is
particularly interesting: the projects that have the least number
of casual contributors, still have a non-negligible amount of
them. Besides, eight of the 18 projects with the least casual
contributors were written in C or C++ (4 each), and other 4 in
Scala. This maybe explains the initiatives from Scala Center
to attract more contributors.9

More concretely, we noticed that the projects among
the 20% with smaller percentage of casuals (ranging be-
tween ∼7% to 10%) include large, consolidated projects
such as ANGULAR/ANGULAR-JS, NODE/NODE-JS, BIT-
COIN/BITCOIN, SPREE/SPREE, ELASTIC/ELASTICSEARCH,
and HOMEBREW/HOMEBREW-CASK. On the opposite side,
for the projects among the 20% with greater variation (rang-
ing from 24% to 84%), we made two interesting observa-
tions: (i) they comprise newer/less popular projects (such as
ENGELBERG/INSTAPARSE, MOJOJOLO/TEXTTEASER, WIN-
JS/WINJS); (ii) 12 projects were written in Clojure and 7 were
written in Typescript. This may indicate that newer projects
and those developed using new or trending languages adhere
more to the pull-based model, making more extensive use
of pull request as a unit composed of many commits that
represent a single contribution.

9https://github.com/scalacenter/sprees
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Fig. 3: Distribution of casual contributors per project (grouped by programming language). The boxplots on the left indicate
commits, whereas the boxplots on the right indicate pull requests.

When we look at the number of pull requests, we observe
that casual contributors submitted 12.5% of the total con-
tributions made to the projects. This number is higher than
the proportion presented in the original study [5] (1.73%).
The result using the commit data collected for this replication
(same period as the data used for the pull requests), showed a
result close to that reported in the original study (contributors
with a single commit had submitted 1.83% of the total
commits). The higher percentage of “contributions” in the
form of pull requests was expected because: (1) there is a
higher percentage of casual contributors identified when using
pull requests (Fig. 3) and (2) the number of pull requests is,
in general, one order of magnitude smaller than the number
of commits (see Table I) because pull requests may contain
multiple commits.

By analyzing the percentage of pull requests made by casual
contributors per project, it was possible to notice a sparse
distribution. While we have 13 projects with casual contribu-
tors responsible for more than 65% of the pull requests, the
other 15 accounts presented less than 5% of pull requests
from casual contributors. The projects FACEBOOK/SHIMMER
and WEAVEJESTER/COMPOJURE respectively received 90.91%
and 86.21% of their contributions from casual contributors,
while in SCALA-JS/SCALA-JS and MOZILLA/SHUMWAY con-
tributions from the casuals account for 1.82% and 2.21%.

RQ1 Summary: We provided additional evidence that
casual contributors are rather common; the number of
casual contributors is non-negligible, averaging 66% in our
sample, and reaching more than 90% in some projects.
Moreover, the number of pull requests made by the casual
contributors average 12.5% and reach more than 50%
in several projects. Compared to the commit level ap-
proach [5], we see an increase both in terms of contributors
and the number of patches submitted when analyzing the
phenomenon at the pull request level.

B. RQ2. What are the characteristics of contributions made
by casual contributors?

In this section, we analyze the number of files changed and
the number of additions and deletions performed by the casual
contributors in their pull requests.
Quantitative Analysis. Each pull request has, on average,
1,804 lines added (Q1=2; median=11; Q3=55), 890 lines
deleted (Q1=1; median=3; Q3=16), 16.78 files changed (Q1=1;
median=2; Q3=4), and 14.37 commits (Q1=1; median=1;
Q3=2). Figure 4 presents the distribution of the number
of additions, deletions, changed files, and commits per pull
request comparing casual and non-casual contributors. To ease
visualization, we filtered out the outliers from the figures.
These figures show interesting patterns. First, when focusing
on the medians and upper quartiles, contributions from casuals
are smaller (i.e., they have fewer additions and deletions and
touch fewer files).
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Fig. 4: Characteristics of the pull requests

Second, as pointed out in the original study [5], a non-
negligible part of the contributions presents multiple files
changed, with multiple additions and deletions. Also, both
groups (casuals and non-casuals) perform a similar number
of commits. In particular, the median number of commits per
pull request is one (two is the third quartile, and three is
the maximum). In fact, 70.5% of the pull requests comprised
only one commit (and only 14.7% comprised more than two
commits). This result is especially aligned with the finding
of Gousios and colleagues, who observed that the majority
of the pull requests comprise a single commit [2], suggesting
that these pull requests may not be the subject of a thorough
code review cycle (which may incur in additional commits
to accommodate the changes requested). In a manual analysis
over a small sample of 20 pull requests with only one commit,
we observed that only three of them had code reviews.

Figure 5 shows the distribution of the number of commits
per pull requests made by casual contributors per language
(without outliers). We found that the distribution is the same
for all languages (median=1, upper quartile=2) but Clojure,
which has a flat boxplot (with median and the upper quartile
= 1). When taking a closer look at the outliers, we observed
that 3,930 (∼9%) of the 42,092 pull requests have more than
three commits, which correspond to 112,056 out of 160,970
(69.61%) commits within casual contributors pull requests.
Qualitative Analysis. To further investigate the goal of the
contributions placed by casual contributors, we manually an-
alyzed a sample of 384 pull requests made by casual contrib-
utors as we described in Section IV-B. Table II summarizes
the results of the manual analysis and the comparison with the
original study. Besides a few differences, it is possible to notice
that the types of contributions made by casual contributors are
in line with those found in the original study. In particular,
we found a remarkable similarity in the category: “bug fix”.
In this category, both the absolute and percentage numbers
matched the ones in the original study. Additionally, we found
contributions ranging from simple typos10 to fixes that require
expertise in given topics, like a fix sent to XBMC project11

that resolves a video glitch when adjusting the volume from

10https://github.com/thoughtbot/paperclip/pull/822
11https://github.com/xbmc/xbmc/pull/2065
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Fig. 5: Number of commits per pull request made by casual
contributors

the XBMC Android remote, which requires knowledge about
cache and Linux kernel.

As for the differences, we found 12 contributions that
could not be classified according to the original categories, so
we labeled them as “Others.” Examples of “Others” include,
creating script utility for creating an rpm file,12 enhancing the
Continuous Integration configuration,13 and bulking merged
commits into a given version branch.14

TABLE II: The categorization of the contributions made by
casual contributors.

Pull requests Pinto et al.
Category # % # %

Bug Fix 116 30.20% 116 30.20%
Documentation 99 25.78% 110 28.64%
Add New Feature 39 10.10% 72 18.75%
Refactoring 46 11.98% 34 8.85%
Update Version/Dependencies 37 9.64% 25 6.51%
Improve Error/Help Messages 19 4.95% 14 3.64%
Improve Resource Usage 5 1.30% 8 2.08%
Add/Fix Test Cases 12 3.12% 5 1.30%
Other 12 3.12% – –

RQ2 Summary: We obtained similar results compared to
the original study when we categorized the casual contrib-
utors’ contributions: most of the contributions are bug fixes
and documentation. Casual contributors’ pull requests are,
in general, smaller than non-casual contributors’, in terms
of lines added, removed, and files changed. However, casual
contributors also make significant contributions.

VI. COMPARING THE RESULTS

According to Carver [26], one of the main values of a
replication study is the comparison of its results with the
results of the original study. Table III summarizes the main

12https://github.com/ariya/phantomjs/pull/342
13https://github.com/tornadoweb/tornado/pull/539
14https://github.com/trinitycore/TrinityCore/pull/13703



findings of both studies. We also provide a comparison in
terms of (1) consistent results and (2) differences in results.
Consistent results. Some of the findings that aligned with the
original study include: (1) a non-negligible number of casual
contributors—comparing the number of casuals obtained, at
the project level, we had 259 projects in which the percentage
of casual contributors was higher using the pull requests, ver-
sus only four projects when using the commits. An example of
this is the project NINENINES/COWBOY, in which by selecting
casual contributors using the commits we found that 70,33% of
the contributors were casual; while by using pull requests we
found 68.00%. (2) Contributions made by casual contributors
are not trivial. Some require an in-depth knowledge of the
source code and technologies involved. Additionally, many
contributions touch different files and deal with improvements
in resource usage and refactoring. (3) Although many contri-
butions relate to documentation (typo/grammar fixes, adding
links, changing headers), most of the contributions are related
to code (bug fixes, adding new features, refactoring).
Different results. We also perceived some differences between
the two studies. As it is possible to notice by going through
the results, the main difference of the results of the original
study and this replication revolves around the size of the casual
contributors’ population. Using pull requests, the average
percentage of casual contributors increased by more than 30%.
We confirmed this by running a Wilcoxon signed-rank test
for every programming language, followed by a Cliff’s delta
test to assess the effect size. All the differences are, indeed,
significant (all p-values<0.05), except for the projects written
in C, for which the difference was marginally significant
(p-value=0.06). For all cases, we found a large effect size
according to the Cliff’s delta (all >0.5).

VII. DISCUSSION

Although we found about 30% more casual contributors
when using the pull request approach, this does not mean that
this replication outperforms the original study by any means.
To shed additional light on this matter, we compared how
effective each approach is in terms of correctly identifying
the contributors as casual or not. To do so, we manually
investigated a sample of 442 contributors (golden-set) that we
identified as having a merged pull request to one of the studied
projects. We found 50 (11.3%) cases of users misclassified
using the pull request level, versus 116 (26.2%) cases when
using commits. We present more detail in Table IV, and
discuss some of the results in the following subsection.

The fact that we observed more casual contributors or
contributions is not the main outcome of this replication.
Rather, the main point is to show how different the results
can be when analyzing contributions using different concepts
of contributions. For this specific case, we saw that using pull
requests is more precise, given that GitHub projects mostly
follow the pull-based process—in which one “contribution”
maps to one “pull request.”

A. Lessons Learned
In this section, we report some lessons that we learned

during the journey of this research analyzing both commits and

pull requests. We hope others may also learn from them and,
as a consequence, mitigate the problems that they introduce.

GitHub contributors without commits. The first interesting
observation from this analysis was that 109 of the contributors
manually analyzed (24.7%) did not have any commits authored
or identified by their GitHub usernames. In fact, 82 of them
had some contributions accepted via pull requests (in 22 cases
more than one pull request). By analyzing the commits under
those pull requests, we found that the root cause is that
the contributors have made commits using an e-mail address
different from the one linked to their GitHub account—which
leads to an unknown user in the GitHub system—or included
third-party commits. When analyzing the pull request level,
this is usually avoided because the pull requests retain the
developers’ usernames. Exceptions may occur, for example,
when users remove their account.

Commits may miss casual contributors. The commits ap-
proach led us to miss 30 casual contributors (6.8% of our sam-
ple). This happened since these contributors had more than one
commit in a single pull request. This was an expected draw-
back of the commits approach, since pull requests are designed
to group commits related to the same contribution—reducing
the issues with different commit habits [32]. This is clear
in cases like the example identified on IPYTHON/IPYTHON
project.15 In such cases, pull requests capture the casual
contributors’ phenomenon better than commits. This is the
main reason why analyzing at the pull request level may be
more precise when the number of contributions is central to
the research.

The pull requests heuristics’ also have flaws. Although
our heuristics helped us to uncover 61,529 out of 143,099
(43%) pull requests flagged as unmerged but in fact potentially
merged, we still found some misclassifications. For example,
we found 15 actual casual contributors (3.4%) that had been
classified as non-casual when using the pull requests. Also,
we identified 27 developers (6.1%) with no commits or pull
requests merged (non-contributors). This happened because
the heuristics applied to the unmerged pull requests identified
some false-positives (e.g., https://github.com/spree/spree/pull/
938. Although the employed heuristics led to false-positives,
we highly encourage their use when analyzing pull requests.
However, this also suggests that there is still room to improve
the heuristics. By delving deep into the results provided by
the heuristics, we found that the “use of keywords that suggest
merging activities right after closing the pull requests” causes
most of the false-negatives. The “merge” keyword had a higher
incidence, but it depends on the context in which it applies
(e.g., “not agree to merge”). On the other hand, using the
heuristics “SHAs” and “commits in the master branch” is more
precision (we did not find any misclassification during our
manual analysis).

Developers could use commits and pull requests. We iden-
tified eight false-positives that had been classified as casual
contributors using pull requests, but that had more than one

15https://github.com/ipython/ipython/pull/4302

https://github.com/spree/spree/pull/938
https://github.com/spree/spree/pull/938
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TABLE III: Summary of the results of both studies.

Original Study Replication Study

Method Commits Pull Requests
Sample Size 275 Projects 263 Projects

Findings

RQ1: Pinto et al. [5] found that 48.98% of the contributors analyzed
were casual contributors, who were responsible for 1.73% of the total
contributions of the analyzed projects.

RQ1: by using pull requests, we found that the overall number of casual
contributors is 66% in our sample (more than 90% in some projects). Casual
contributors are responsible for 12.5% of the total pull requests in our sample.

RQ2: After manually inspecting a sample of contributions, Pinto et
al. [5] found that 28.64% were related to documentation, 30.20% of
them fix bugs, 18.75% propose new features, and 8.85% refactor code.

RQ2: By analyzing pull requests made by casual contributors, we found that
25.78% are related to documentation, 30.20% fix bugs, 11.98% refactor code,
and 10.10% add new features. We also found pull requests enhancing CI
configuration and bulking previously merged commits into another branch.

TABLE IV: Manual analysis of casual contributors.

Manual Pull requests Commits

Classif Casual Non-casual Casual Non-casual N/A

Casual 251 15 176 30 60
Non-Casual 8 141 4 123 22
Non-Contributor 26 1 – – 27
Total 285 157 180 153 109

accepted contribution. The main reason for this is that the
developers had commits submitted directly to the repository,
without opening a pull request. This happened in at least two
identified scenarios: (i) contributions made via git that skipped
the pull request flow;16 (ii) commits made before the migration
to GitHub.17 One way to mitigate this situation would be to
follow a mixed-approach: first analyzing pull requests, and
then checking the commits made by the same user (but not
included in any pull request). On the one hand, this process
may bring some drawbacks of using commits; on the other
hand, it may provide a more comprehensive analysis.

Git brings a certain messiness to the analysis. When
performing our manual analysis, we observed that project
maintainers employ git commands such as rebase (i.e., rewrites
the commit history) and cherry-pick (i.e., does not alter the
existing history; instead, it adds to the history) that alter the
structure of a commit. These operations have the potential
to exclude commits (with rebase) or skip commits (when
manually copying contributions), which in turn hinders the
analysis of contributions made by casual contributors. Many
of these cases had been captured by the heuristics applied to
pull requests originally classified as unmerged.

Developers can also bring messiness. In one example, a
developer had a pull request merged into the master branch and
was requested to open another pull request targeting the cur-
rent stable release branch (which was also merged). Therefore,
the developer submitted the same commit to two pull requests;
henceforth, when we analyzed the commits to master, we
found only one, but by analyzing the number of pull requests
merged, we found two. We also found contributions copied
into a different commit and manually added via command line.

16https://github.com/cocos2d/cocos2d-x/commits?author=zhukaixy
17 https://github.com/fzaninotto/Faker/commits?author=paulvalla

VIII. THREATS TO VALIDITY

Like any empirical study, our research presents some threats
to validity. First, it is limited to OSS projects hosted on
GitHub. Although we studied hundreds of them, we did not
explore all possible OSS projects available online that use
the pull-based model. Moreover, we tried to use the same
projects investigated in the original study. However, some of
these projects became inactive or were not found at all. As
a consequence, our number of studied projects differs a bit
from the original study (275 in the original study and 263 in
our research). We do not expect significant differences in the
results due to the projects not reused in this research.

Moreover, the original study relied on data gathered via git
log utility to conduct its analysis. In our study, we opted to
use the GitHub API and GHTorrent, which is more reliable
when it comes to disambiguated contributor identification.
However, this benefit comes with a challenge: when fetching
data from the GitHub API, we observed that some commits
did not have the author identification. This particular threat
happened because one GitHub contributor can do commits
using an unknown git configuration (which prevents GitHub
from linking the commit to the username). To mitigate this
threat, we removed the commits without user identification
from our research. Regarding the use of the GitHub API,
however, one may argue that this decision may introduce some
noise on the commit data when compared to the original
study. Moreover, we kept only those projects that used the
pull request workflow, discarding those that do not accept
pull requests (see Sect. IV-A1). We observed, though, that the
results using commits sharply align with the original study. For
example, the percentage of contributions by casual contributors
was 1.73% in the original study, and we found 1.83% using
the GitHub API with data from 2 years later. This strengthens
the confidence in the results of the original study.

We also acknowledge that the method of using pull requests
does not take into account the fact that there may be open
pull requests from a casual contributor. This may influence
the number of classification, given that the developers may
have other pull requests that waiting for review (still open) at
the moment of the collection.

Similar to projects that become inactive, GitHub users can
also become inactive or change their usernames, which could
introduce biases to our analysis. Another threat relates to
contributors that open a pull request with one user account,
but make commits with another user account (this problem

https://github.com/cocos2d/cocos2d-x/commits?author=zhukaixy
https://github.com/fzaninotto/Faker/commits?author=paulvalla


was reported as “GitHub contributors without commits” in
Section VII-A). Due to the scale of our study (i.e., more than
293,292 pull requests and 1,028,172 commits were analyzed),
we were unable to verify or fix these concerns. Still regarding
the pull requests, we observed that although a pull request can
be found in the API, it could be deleted from the repository,
creating inconsistencies in the dataset. Finally, we downloaded
our data in October 2017. Since the studied projects are still
under evolution, we expect that the overall number of pull
request increased during 2018–2019 time window. We do not
expect, however, changes in the contributing behavior, like the
ones we highlighted throughout this study.

IX. CONCLUSIONS

In this paper, we replicated a study on casual contrib-
utors [5], a recent phenomenon in OSS communities. To
conduct this replication, we used the same subjects, and the
same method used to infer casual contributors—the commit
method. Additionally, we used a second method—the pull
request method. Our intention with the use of pull request
was to understand whether different methods used for the same
purpose could yield the same results.

Although the results may at first glance seem obvious,
existing studies using commits may overlook the precise
picture of casual contributors in OSS projects. Moreover, the
results may be useful not only for the context of casual
contributors, but also for researchers analyzing other aspects
of OSS communities tied to the number of contributions that
may be impacted by the concept of contribution.

Among the findings, we found that with the use of pull
requests to find casual contributors the number of casual con-
tributors is higher than those reported with the commit method.
Moreover, by manually analyzing a set of contributors, we
evidenced that using pull requests results in a smaller number
of false-negatives, making pull requests better than commits
for capturing the casual contributors’ phenomenon. With this
replication, we also thereby expect to benefit other researchers
toward designing better mining approaches.
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