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Abstract—Although the goal of scientists is to do science, not
to develop software, many scientists have extended their roles to
include software development to their skills. However, since sci-
entists have different background, it remains unclear how do they
perceive software engineering practices or how do they acquire
software engineering knowledge. In this paper we conducted
an external replication of one influential 10 years paper about
how scientists develop and use scientific software. In particular,
we employed the same method (an on-line questionnaire) in a
different population (R developers). When analyzing the more
than 1,500 responses received, enriched with data gathered from
their GitHub repositories, we correlated our findings with the
original study. We found that the results were consistent in many
ways, including: (1) scientists that develop software work mostly
alone, (2) they decide themselves what they want to work on next,
and (3) most of what they learnt came from self-study, rather than
a formal education. However, we also uncover new facts, such
as: some of the “pain points” regarding software development
are not related to technical activities (e.g., interruptions, lack of
collaborators, and lack of a reward system play a role). Our
replication can help researchers, practitioners, and educators to
better focus their efforts on topics that are important to the
scientific community that develops software.

I. INTRODUCTION

Data are the cornerstone data science. To study and analyze
such data, in the big data era, (data) scientists have to rely
on robust yet tailored software tools to help them uncover
new facts or refute established beliefs, providing guidance
for leaders to take action. However, due to the myriad of
specific problems that scientists usually work on [1], it is not
uncommon the need to create their own tooling, since tool
(either proprietary or open source) tailored to deal with their
particular needs might not even exist.

Although the goal of scientists is to do science, not create
software [2], scientists have no other option other than develop
software to help them to conduct their work. However, scien-
tists often come from diverse backgrounds and frequently do
not have much, if any, formal training in computer science,
in general, or software engineering, in particular [3]. As a
consequence, the resulting scientific software usually serves
only the purpose of validating an idea; i.e., it does not exhibit
maturity, nor the breadth of scope necessary for use in real
software development.

To shed some initial light on how scientists develop soft-
ware, the work conducted by Hannay and colleagues [3]
presented a comprehensive overview of the state of the practice

of scientific software development. This study surveyed about
2,000 scientists and, among the findings, the authors observed
that the lack of software engineering knowledge is one of the
main pain points when developing scientific software. This
study was published at the Software Engineering for Com-
putational Science and Engineering (SECSE) [4], a workshop
held in conjunction with ICSE’2009.
Why this replication is needed? As of 2017, the paper of
Hannay et al [3] became very influential for the scientific
community, in general, and for scientists that develop soft-
ware, in particular. Unfortunately, after about 10 years of its
initial publication, no replication was conducted. Given the
fundamental changes in the software development practices
in the last few years (e.g., the introduction of social coding
websites and the prevalence of on-line learning platforms)
and unique challenges of scientific research (e.g., the frequent
and unforeseen changes in requirements and the need for
both highly specialized domain knowledge and programming
expertise [5]), little is known about the current state-of-the-
practice of scientific software development.

The goal of this paper is to update the understanding about
how scientists develop scientific software. To achieve this goal,
we present an external replication of the original study1. In
the context of Software Engineering, a replication consists
of repeating an original experiment by reusing its materials,
experiment design, or analysis procedures [6]. A replication
can be either internal (conducted by the same research group)
or external (by other groups in other context) [7].

Although original paper was focused on both developing
and using scientific software, in this replication we focused
only on how developers develop software (we discuss our
rationale for not including the questions related to how they
use software in Section III-A). Similar to the original study,
we collected scientists’ perception through an on-line survey
(details about our methodology at Section IV). We reused the
list of questions of the original study (the original authors
gently made their survey available). Because of our focus on
how scientists develop scientific software, we removed the
majority of the survey’s questions related to how scientists
scientific use software.

1Throughout this paper, we refer to the study of Hannay et al [3], as the
“original study”.



The target of our survey is R scientists that developed
and published at least one software package at CRAN (The
Comprehensive R Archive Network), the most well-known R
package manager (details on why R developers at Section II).
To avoid R developers that do not consider themselves are
scientists, in our invitation email we asked them to not answer
the questionnaire. Our survey received 1,553 responses from
R developers all over the world. Still, 603 respondents left the
GitHub address of the projects they maintain. We take advan-
tage of information from these repositories to complement the
findings from our survey.

II. R AND CRAN

R is a multi-paradigm, dynamic typed programming lan-
guage introduced in 1993. It is open-source, released under
GPL license. CRAN is the most well-known package manager
that manages and indexes R packages. CRAN distributes both
the source and binary code of packages published on it.
As of October 2017, CRAN contains over 11K R software
packages for all kind of specialized purposes. Anyone inter-
ested in submitting her R package to CRAN should follow
the guidelines available at: https://cran.r-project.
org/submit.html. The CRAN team carefully analyzes
each submission, looking for issues related to (1) the software
license/copyright, (2) the package dependencies, or (3) the
organization of the binary and source code packages [8].

For this study, we consider any developer that has published
at least one R package through CRAN as a scientist. We
chose to focus only on the R programming language because
it this programming language was curated by an statistician
for statistical computations, therefore, anyone interested in
data analysis (a domain well-explored by data scientists)
is a suitable R user. Still, different than other traditional
programming languages, the R programming language is well-
used in a variety of fields, including Statistics, Economics,
Biology, Psychology, and many others, for research purposes.
The software engineering field is particularly well-supported,
with textbooks [9], general guidelines, and workshops2. As a
consequence, about 1% of the articles indexed by Elsevier’s
Scopus cites R or one of its packages [10].

III. THE ORIGINAL STUDY

According to Carver [7], at a minimum, a replication paper
should report the following information about the original
study: Research questions, Design, Participants, Artifacts, con-
text variable, and summary of the results. We discuss each one
of them next.

A. Research Questions

The original paper had the following research questions:
RQ1. How did scientists learn what they know about develop-

ing/using scientific software?
RQ2. When did scientists learn what they know about devel-

oping/using scientific software?

2https://github.com/Derek-Jones/ESEUR-workshop

RQ3. How important is developing scientific software to scien-
tists?

RQ4. How much of their working time do scientists spend on
developing scientific software?

RQ5. Do scientists spend more time developing/using scientific
software than in the past?

RQ6. On what scale of hardware do scientists develop/use
scientific software?

RQ7. What are the sizes of the user communities of scientific
software?

RQ8. How familiar are scientists with standard concepts of
software engineering?

RQ9. Does program size, time spent on programming, or team
size influence scientists’ opinions about the importance
of good software development practices?

Since the original study was aimed at both understanding
how scientists develop and use software, the RQ1–6 provided
such guidance. In this replication paper, we decided not to
replicate the research questions related to “using software”. As
of 2017, we believe that the majority of scientists use software
for research purposes, and the way they use software is
greatly influenced by the kind of research they are conducting
(as already found by the authors). Therefore, due to our
diverse sample, and the plethora of scientific software readily
available nowadays, we believe that the questions related to
how scientists use software could be better answered by field
studies or ethnographic studies; we postponed this replication
to another study.

We also removed RQ6, which is focused on hardware
platforms. We removed this research question because, as of
2017, there is a number of hardware platforms that were not
conceived (from smartphones, smartwatches, and smartglasses,
to personal computers, mainframes, and drones) when the
original study was published. Therefore, the understanding of
these platforms and therefore the comparison with the original
study, considering this complex landscape, was left for future
work.

Finally, instead of asking the respondents their perception
about the size of the user community (RQ7), we asked
scientists to mention where they maintain the source code
of their software. Therefore, we mined these repositories to
gather data to answer this RQ. When possible, we also enrich
the answers to the other research questions with data from
these repositories.

B. Design

The original study conducted an on-line survey. They asked
36 questions (9 open questions). The survey was advertised
through mailing lists, bulletin boards, word of mouth, and
with advertisements in both the on-line and print editions
of American Scientist magazine. Due to the nature of these
channels, the authors were not able to estimate how many
users received the survey invitation (and therefore calculate
the response rate). The authors did not mention how long did
they wait for the answers.

https://cran.r-project.org/submit.html
https://cran.r-project.org/submit.html


C. Participants

The original study was answered by 1,972 participants.
Among them, most of the respondents came from Europe
and North America (725 and 715 respondents, respectively),
followed by Australia/New Zealand and Asia (66 and 57 re-
spondents, respectively). South America, Central America, and
Africa had below 50 respondents each. About two-thirds of
the respondents stated that their highest academic degree is a
Ph.D. (or equivalent). Moreover, about 50% of the respondents
are academic researchers (professors, post-docs, or similar).

D. Artifacts

Since the original study conducted an on-line survey, the
main artifact used was the questionnaire. As we aforemen-
tioned, the original authors shared the questionnaire with us
(without the responses, however). Only minor modifications
were made. We asked 28 questions.

E. Context variables

Drawing general conclusions from empirical studies is diffi-
cult because any process depends on a potentially large number
of relevant context variables [11]. The original study employed
an on-line survey, advertised through different channels (de-
tails at Section III-B). We employed the same method, but
targeting a more focused community: scientific developers that
published at least one R package on the CRAN repository.
As a consequence, the demographics from both studies are
different in terms of location, number of respondents, software
engineering background. Similar to the original study, we also
cannot assume that the results generalize to other software-
intensive communities.

F. Summary of the results

The summary of the results (from both the original and the
replications study) are available at Table I.

IV. THE REPLICATION SURVEY

Similarly to Hannay et al. [3], in order to investigate how
scientists develop scientific software, we conducted an on-
line survey. Our target population are scientists that were the
main author of at least one R software package. Therefore, for
the purposes of this study, any developer who authored an R
package was considered a scientist. We search for R packages
in CRAN, the most well-known package manager for R-based
packages.

A. Subjects

As of November 2017, in CRAN there are over 11k
packages registered. We downloaded all these packages and
extracted metadata related to author’s information. We found
that ∼5k R scientists authored more than one package. To
those scientists, we decided not to to send email twice.
We took this conscious precaution in an attempt to avoid
jeopardizing the scientists view of this research and possible
future researches since repetitive unsolicited e-mails can be
viewed as spam. Our subjects comprehend a list of 6,381
scientists with valid email addresses.

B. Design

Our survey was based on the recommendations of
Kitchenham et al. [12], we followed the phases prescribed:
planning, creating the questionnaire, defining the target
audience, evaluating, conducting the survey, and analyzing the
results. We set up the survey as an on-line questionnaire (it can
be found at: https://docs.google.com/forms/d/
1tioN8-2TGC6OX4rOPttXkRRf1gQlsD539n1bVsnsIE8/
viewform). Before sending the actual survey, we conducted
a pilot with 50 scientists. During the period of one week,
we received 15 responses (30% of response rate). The
feedback obtained from the respondents helped us to better
clarify some questions (i.e., when we asked about where
they maintain their R packages, some respondents mentioned
the CRAN website, which we were already aware of. We
improved this question to invite respondents to refer to
external repositories, such as GitHub or BitBucket) and to
improve some closed options (i.e., when we asked how they
decide what to do next, two respondents mentioned that they
“think independently”, which was not initially covered. We
made this option available). After these modifications, the
initial responses were removed from the questionnaire, and
we deployed the actual survey. We did not include scientists
already included in the pilot survey. Still, 75 emails were not
sent due to technical problems. During a period of about 30
days, we obtained 1,553 responses (24% response rate). For
both surveys, participation was voluntary and the estimated
time to complete each survey was 10-15 minutes.

C. Questions

Our survey had 28 questions (none were required, 6 were
open). Some of the questions covered in the survey include:

— What is your gender? Choices: {male, female, other}
— Please list the highest academic degree you have received

or are working toward it. Choices: {BS, MS, PhD}
— What is the subject of this degree?
— What is the URL which your R package is maintained?

(e.g., GitHub)?
— What percentage of you total working time in a week do

you spend developing software? Choices: {0%, 10% ...
100%}

— How important is developing software yourself for your
own research? Choices: {Very important, Important, etc}

— How important was each of the following for helping you
learn what you know about developing software? [self-
study, from peers, at an education institution, at work]
Choices: {Very important, Important, etc}

— Rank the time spend in the following activities (Plan-
ning, Reading or reviewing code, Coding and debugging,
Quality assurance, Packaging software, and Documenting
software) when you are developing software. Choices:
{Never, Seldom, etc}

— How do you decide what to do next when you are de-
veloping software? Choices: {My supervisor tells, High-
priority bugs, etc}

https://docs.google.com/forms/d/1tioN8-2TGC6OX4rOPttXkRRf1gQlsD539n1bVsnsIE8/viewform
https://docs.google.com/forms/d/1tioN8-2TGC6OX4rOPttXkRRf1gQlsD539n1bVsnsIE8/viewform
https://docs.google.com/forms/d/1tioN8-2TGC6OX4rOPttXkRRf1gQlsD539n1bVsnsIE8/viewform


— What are the three most pressing problems, challenges,
issues, irritations, or other “pain points” you encounter
when developing scientific software?

The complete set of questions, as well as the actual survey,
its responses, and the scripts used to gather additional data
from the repositories, are available at the companion website:
https://github.com/fronchetti/SANER-2017.

V. RESULTS

In this section we discuss the results of our main study.

A. Characterizing the R community

When analyzing the quantitative data from the survey, we
observed that 88% of our respondents are male, 45% have
between 30–40 years (24% have between 18–30, 4% have
over 60), 49% are located in Europe (34% in North America,
0.5% in Africa). About their academic degrees, 80% are
working towards (or have already received) their PhD (15%
have a master degree). Moreover, 64% of the respondents are
Academic Researchers (e.g., professor, post-docs, etc), 20%
are software engineers, 15% are graduate students, 10% are
teachers, 9% are industrial research scientists (whereas another
8% are government research scientists). Our respondents are
from a diverse set of research fields, including Mathematical
Statistics, Chemistry, Forestry, Biophysics, and and Computer
Science. As a consequence of this diversity, they are working
on myriad of different problems, including Genomics, Cog-
nitive Neuroscience, Microbial Ecology, Biogeography, and
Computer Vision.

Finally, 603 respondents left the GitHub URL of their repos-
itories. We take advantage of this information and enriched the
survey responses with data from the repositories. To draw a
perspective about the size of the R packages our respondents
maintain, Figure 1 shows the distribution of the number of
lines of code, computed by a tool called cloc3. As we can see,
although R is the main programming language for all studied
projects, our respondents often employ other programming
languages. In our survey, our respondents mentioned that when
they not developing scientific software using R, they use
C/C++ (55%), Python (51%), or Shell Script (31%).

Total

R

0 5000 10000 15000

Fig. 1. The distribution of the number of lines of code

Discussion: Similar to the original study, 50% of the respon-
dents were academic researchers. However, the percentage of
graduate students and government scientist was higher in the
original study: 25% and 16%, respectively (in contrast to 14%

3https://github.com/AlDanial/cloc

and 8% in our study). Besides R, C/C++ and Python are also
well-used. In terms of projects’ size, the R packages studies
have a median size of 1,609 lines of code, when considering all
programming languages (min: 1, 1st quartile: 602, 3rd quartile:
4,457, max 214,356); whereas a median size of 909 lines of
code, when considering only R (min: 0, 1st quartile: 341, 3rd
Quartile: 2,321, max: 49,234).

B. Training and education

In this group of questions we provide answers to RQ1
and RQ2. We first asked respondents (Q16) how important
was each of the following when learning about software
development (the examples under parenthesis were provided to
the respondents): Informally by self-study (i.e., on your own),
Informally from peers (e.g., at school, university, or work),
Formally at an education institution (e.g., by taking a course),
Formally at work (e.g., by talking a training course). Figure 3
shows the results.

21%

35%

59%

98%

53%

35%

13%

0%

26%

30%

27%

2%

At work

Formal education

From peers

Self study
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Percentage
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Important

Somewhat important

Not important

Not at all important

Fig. 2. How important was the way you acquire software development
knowledge?

Discussion: In the original study, 97% of the respondents
stated that self-study was important or very important for de-
veloping software. A similar behavior was found in our study:
99% of our respondents agree that self-study was important or
very important. However, when comparing learning from peers
or from formal education, we found a remarkable agreement:
in both studies, 60% and 35% of the respondents, respectively,
agree that they are important or very important. In contrast,
only 13% of the respondents of the original study believed
that formal training at work was import or very important. In
our study, about 22% of the respondents shared this belief.

To answer RQ2, we asked respondents (Q19) how important
was each of the following periods for helping them learn about
software development: During high school, During under-
graduate studies, During graduate studies, During professional
work more than 15 years ago, During professional work 11-15
years ago, During professional work 6-10 years ago, During
professional work 5 years ago. Figure 3 shows the results.
Discussion: Grad school was considered much more impor-
tant than undergrad or high school, for acquiring software
development knowledge: 72% of the respondents believe that
graduate school was important or very important to learn what

https://github.com/fronchetti/SANER-2017
https://github.com/AlDanial/cloc
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Fig. 3. How important was the way you acquire software development
knowledge?

they know about software development; 61% of them consid-
ered High school (61%) as not important or not important
at all. These results are also in sharp agreement with the
results of Hannay et al [3]. Interestingly, there is a growth
of importance of software development learning at work over
the years. Only 36% of the respondents considered the period
of 15+ years ago as important or very important for acquiring
software engineering knowledge; 76% shared this impression,
when considering only the last five years of work.

C. Importance and frequency of developing scientific software

To provide answers to RQ3, we asked our respondents how
important is developing software for their own research (Q13)
and for the research of others (Q14). Figure 4 shows the
results.

62%

85%

7%

3%

30%

11%

Research of others

Your own research
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Very important

Important

Somewhat important

Not important

Not at all important

Fig. 4. On the importance of scientific software.

Discussion: In our study, 86% of the respondents believe that
scientific software is important or very important to their own
research (84% of the respondents of the original study shared
the same perception). However, 63% of our respondents stated
that developing software for the research of others is important
or very important (in contrast to the 46% of the respondents
of the original study).

Although software development is not the main activity
of our respondents (as we saw in Section V-A, there are
Chemistry, Forestry, Biophysics, and so on), when analyzing
Q11, we found that our respondents are fairly active, when it
comes to software development: 63% of them have developed
software in the same day or in the day prior to answering
our survey (18% in the same week). The majority of the

respondents (98%) have developed software in the last five
years (Q9). working hours
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Fig. 5. Hours spent developing
software per week (%)

To answer RQ4, we asked our
respondents about their percep-
tion regarding the total time they
devote for software development
(Q10). We observed that, on av-
erage, our respondents spent 30%
of their working hours developing
software per week (min: 0%, 1st
quartile: 10%, median: 20%, max: 100%, std dev: 23.73%).
Figure 5 hows the distribution. Likewise, on average, the
respondents of the original study spent less than 30% of their
working hours developing software.

Furthermore, to provide answers to RQ5, Figure 6 shows
the perception of our respondents about the amount of time
devoted developing software, when compared to the last year,
the last 5 years, and the last 10 years (Q15).
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20%
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More time

Same amount of time

Less time

Much less time

Fig. 6. How important our respondent think about the software engineering
concepts?

Discussion: As we can see in this figure, 82% of the
respondents believe that they spend “much more time” or
“more time” developing software than 10 years ago; 72% when
compared to the last five years. In the original study, 53% of
the respondents state that they spend more or much more time
than 10 years ago (which would be 1998, since the original
study was published in 2008). Even though the two groups of
respondents believe that they send on average 30% of their
working time developing software (RQ4), they also believe
that the amount of time devoted to software development is
increasing over the decades.

To complement this finding, we investigated the commit
activity of the studied projects over the years. Figure 7 shows
the number of projects with activity (i.e., commits in 3-
month time window) to the master branch, excluding merge
commits. As we can see, the number of projects with activity
is increasing over the years.

D. Teams and communities

To answer RQ7, we asked how large is their development
team (Q12). We found that our scientists work mostly alone
(53% of the respondents develop software alone) or in small
teams (another 42% develop software within a team of two to
five). When mining the software repositories, we found that, on
average, the set of scientific softwares studied have 3.44 source
code contributors (min: 0, max: 36, standard deviation: 3.6).
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Interestingly, we found two
projects with zero contributors.
Investigating these projects, we
found that they are read-only
mirrors of the original CRAN
R packages4. We discarded
these projects for the remaining
analysis. Figure 8 shows the
distribution of source code
contributors in the analyzed
projects (removing outliers to ease visualization).

Still, in the original study, the respondents were asked about
the size of the community around their scientific software.
In this study, instead of asking the respondents about their
perception (which could be inaccurate, due to the lack of
ways to measure it), we mined popularity metrics, available
on coding hosting websites, such as the number of stars and
forks. These metrics describe how developers appreciate or
are interested in a given open-source project [13] (therefore,
they might work as a proxy for project popularity). Figure 9
shows the distribution of the number of stars and forks for the
analyzed projects (excluding outliers to ease visualization).

Stars

Forks

0 5 10 15 20

Fig. 9. The distribution of the number of stars and forks (excluding outliers)

As we can see, the median of stars is 2 (max: 723, 3rd
quartile: 9) and the median of forks is 1 (max: 139, 3rd
quartile: 3). In comparison, in the original study, 56% of the
respondents believe that the scientific software they use have
more than 5,000 users worldwide.

E. Time Spend on Software Engineering Activities

Figure 10 ranks the time spend in the following activities
when developing software (Q18): Planning (e.g., discussing or

4for instance, https://github.com/cran/nearfar

finding out what new functionality to implement in software,
discussing or finding out how to structure or design the
software in terms of modules, which procedures will do what,
etc.), Reading or reviewing code, Coding or debugging (e.g.,
writing and compiling C++ for a new module or proce-
dure), Quality assurance (e.g., creating tests, checking results),
Packaging software (e.g., updating Makefiles or creating pack-
ages for release), Documenting software.
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Fig. 10. Rank of the time spent in software engineering activities

Discussion: As we can see, 84% of our respondents develop
or debug code every time or almost every time. Other time-
intensive activities are: quality assurance (60% do every time
or almost every time) and reading or reviewing code (59%
do every time or almost every time). Planning and packaging
software are the activities that our respondents spend the least
time. Still, since the majority of the respondents work alone
(Section V-D), it might come as no surprise that 64% of
our respondents “decide themselves what they want to work
on next” (Q19). Likewise, another 19% “look at yesterday’s
(the most recent) results and decide what to change in the
program today”. Only 9% consult colleagues, and 4% consult
the software specification and choose the next piece of item
to implement.

F. Importance of software engineering practices

To answer RQ8, Figure 11 shows the results of Q20,
which we asked how important they think are the fol-
lowing software engineering concepts: Software requirements
(e.g., eliciting, analyzing, specifying and prioritizing func-
tional and non- functional requirements), Software design
(e.g., specifying architecture and detailed design using de-
sign by contract, design patterns, pseudo-code, or UML)),
Software construction (e.g., coding, compiling, defensive pro-
gramming), Software verification (e.g., correctness proofs,
model-checking, static analysis, inspections), Software testing
(e.g., unit testing, integration testing, acceptance testing,
regression testing, code coverage, convergence analysis),
Software maintenance (e.g., correcting a defect, porting to new
platforms, refactoring), Software product management (e.g.,
configuration management, version control, release planning),
and Software project management (e.g., cost/effort estimation,
task planning, personnel allocation)
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Fig. 11. The importance about the software engineering concepts

Similarly to Q20, in Q21 we asked how well our respon-
dents think they understand the same software engineering
concepts. Figure 12 shows the results.
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Fig. 12. How well our respondents understand the software engineering
concepts?

Discussion: Our respondents classified the majority of the
software engineering concepts as very important or important
(Figure 11). For instance, Software testing was considered
important or very important for 85% of the respondents. In
contrast, only 34% of the respondents considered Software
project management as important or very important. Moreover,
we notice that Software construction is the practice that our
respondents consider themselves as well-experienced (76%
of them understand the most parts or are experts). Software
project management, on the other hand, is the practice that
our respondents have the least understanding (69% of the
respondents have novice understanding, vague understanding,
or have no idea about it). Generally speaking, when compar-
ing these findings, we observed that the respondents judged
they knew less about the concepts of what they believe are
important. To confirm this observation, we used Chi-Square
to test the hypothesis whether the levels of understanding
(Figure 12) are independent from the levels of importance
(Figure 11) assigned by scientists for each software engi-
neering concept. We found a p-value less than 0.05 in all
pair-wised tests. Thus, we reject the null hypothesis that the
scientist knowledge depends from what they judge important.
This behavior was different from the original study, when
the respondents mentioned a high level of understanding to

five software engineering practices (“software requirements”,
“software design”, “software maintenance”, “software product
management”, and “software project management”) than they
judge their level of importance.

To answer RQ9, in the original paper, authors employed a
one-way Analysis of Variance (ANOVA) statistical test [14]
to check if team size and project size influence the scientist’s
perceptions about the importance of software engineering
concepts. To perform a similar analysis, we used data from
Q12 (How large is your development team?) to describe
the team. Using the same scale of the original study, we
obtained the following distribution: 1 developer (768 respon-
dents), 2–5 developers (585 respondents), 6–10 developers (15
respondents) and, more than 20 developers (10 respondents).
Regarding project size, we used the already calculated lines
of code (Section V-A). Using the same scale of the original
study, we obtained the following distribution: up to 500 LOC
(127 respondents), 501–5K LOC (325 respondents), 5K–50K
LOC (126 respondents), 50K–500K LOC (6 respondents).
Discussion: Regarding RQ9, in the original study, the au-
thors found that large projects and large development teams
might increase the perceived importance of some software
engineering practices, including software construction and
software maintenance. However, the authors also reported that
there is no consistent trend of association that correlates an
increase of project or team size to perceived importance of
software engineering concepts. In our study, we could not
reject the null hypothesis that project and team size influences
the respondents’ perceptions about the software engineering
concepts.

G. Naming the pain on developing scientific software

Finally, in Q22, we asked what are the three most pressing
problems, challenges, issues, irritations, or other “pain points”
the respondents encounter when developing scientific software.
A total of 1,062 respondents answered this questions. We
adopted a straightforward data-driven thematic approach to
analyze this question: We summarized each pain in a theme,
and then read through the themes multiple times to find cross-
cutting sets of common themes. Two authors analyzed the
responses. To avoid bias, the themes procedure was done
independently, followed by conflict resolution meetings.

Among the findings, we observed that some pain points are
well-known from the software engineering practice, such as
Cross-platform compatibility [15] (e.g., “porting from mac to
windows”), Poor software documentation [16] (e.g., “Poorly
documented software and data packages and APIs (in partic-
ular, incomplete function argument or data field definitions)”),
or to Interruptions while coding [17] (e.g., “Teach others not
to interrupt my work when I’m focused on the programming”).
Some other pain points have been discussed in the open-source
literature, such as Lack of time [18], Scope bloat (e.g., “the
goal to add features continuing to expand”), or Lack of user
feedback (e.g., “No idea how the end user will ultimately be
using the software I write.”).



However, we also observed some pain points intrinsically
related to the scientific community, such as Mismatch be-
tween coding skills and subject-matter skills (e.g., “I am
mathematician, not an expert in software.”), Lack of formal
reward system (e.g., “Publishing norms make it hard to get
the same credit for writing a software package that you would
for a publication. Software packages are often not cited by re-
searchers using them”), or, similarly, Hard to collaborate on
software projects, since “[scientists] are concerned with how
credit will be allocated”. As a consequence, some respondents
mentioned that aloneness plays a role (e.g., “I work alone too
much. I’d rather be part of a software development team”.)
As we pointed out in Section V-D, 53% of the respondents
work alone.

VI. COMPARING THE RESULTS

According to Carver [7], one of the main values of a
replication is the comparison of its results with the results
of the original study. Table I summarizes the main results of
both studies.

Finally, we also provide a comparison in terms of (1)
consistent results and (2) differences in results.
Consistent results. Some of the findings that were in line with
the original study include: (1) 99% of our respondents (97% of
the original study) considered that self-study was important or
very important; (2) Both studies suggested that High school
and over the last 15 years at work as not important or not
important at all; (3) in both studies, there is the perception
that the time spend developing software is increasing over the
decades (although both studies — conducted 10 years apart
from each other — also agree that, on average, the respondents
spend 30% of their working time developing software).
Differences in results. Some of the findings that were dif-
ferent from the original study include: (1) the authors of
the original study found that developers that work in large
projects or in large development teams might increase the
importance of software engineering practices (we could not
support this hypothesis); (2) 56% of the respondents of the
original study believe that the scientific software they use have
more than 5,000 users worldwide (when mining data from the
repositories, we found that, at maximum, the analyzed projects
have 723 stars and 139 forks); (3) developing software for the
research of other was considered important or very important
for 63% of the respondents in our study (46% in the original
study).

VII. THREATS TO VALIDITY

Since we are not the authors of the original study, we
may have incorrectly employed the method or misunderstood
the results reported, therefore, our comparison might lead
to wrong conclusions. To mitigate this threat, we got in
touch with the original authors, which kindly shared the same
survey they employed. Although we added new questions to
the survey (e.g., Q8 asked for the GitHub address of their
projects), we kept the same questions’ titles and options of
the original study. Only small issues (e.g., typos) were fixed.

Still, before sending the actual survey, we conducted a pilot
one. We fixed the issues raised accordingly (Section IV-B for
details).

One might argue that not all R developers are indeed
scientists. We concur. To mitigate this threat, in our invitation
email we kindly asked R developers that do not consider
themselves as scientists not to answer the questionnaire. We
also asked them not to share the questionnaire with their
peers, since some of them might not be scientists as well.
Still, as already discussed in Section II, since data is the
cornerstone of any scientific work, we chose to focus on the
CRAN community because the R programming language is
well-employed in data-driven disciplines56, including Biology,
Sociology, and Chemistry.

Ultimately, our results only apply to scientists that develop
R packages. Although our respondents came from a variety
of fields and work on many different problems, our results do
not cover other scientific development communities (e.g., sci-
developers of LATEX macros). Finally, scientists from certain
regions were not well represented (e.g., as discussed in Sec-
tion V-A, we received less than 50 answers from respondents
in Africa). Therefore, it is unclear how our results transfer to
scientists in these places.

VIII. RELATED WORK

In this section we describe the studies overlapping with the
scope of our work.
Surveys about scientific software development. In a survey
with 60 scientific developers, Nguyen-Hoan et al. [19] found
that version control systems (VCSs) and integrated devel-
opment environments (IDEs) were used by around 50% of
developers. Similar to our study, the authors reported that
testing and verification activities could be more widely used,
such as peer review and integration testing. The majority of
developers were Engineerings (non-software) with program-
ming experience between 6 to 15 years, and with background
on C, C++, and Perl. Only seven were R developers. Prabhu et
al. [20] surveyed 114 randomly selected researchers from di-
verse fields of science and engineering at Princeton University.
For programming, the majority of researchers used Fortran and
Matlab (only 14% used R). On average, scientists estimate that
35% of their research time is spent in programming/developing
software (30% was found in our study)Despite of the effort
placed on acquiring programming skills, most scientists are
not satisfied with the performance of their programs; they also
believe that performance improvements might significantly
improve their research. Our work differ from the previous ones
due to our broad focus on how scientists develop scientific
software; Prabhu et al. [20] addressed the practices researchers
follow to enhance computational performance, while Nguyen-
Hoan et al. [19] was focused on understanding what tools

5https://spectrum.ieee.org/static/interactive-the-top-programming-
languages-2017

6http://r4stats.com/articles/popularity/



TABLE I
SUMMARY OF THE RESULTS OF BOTH STUDIES. THE ANSWERS TO THE RQS FOR THE ORIGINAL STUDY ARE VERBATIM QUOTES.

Original Study Replication Study

Method on-line Survey on-line Survey

Sample Size 1,972 participants 1,553 participants

Findings

RQ1: “96.9% of the respondents state that informal self study is
important or very important for developing scientific software (60.1%
state that informal learning from peers is important or very important).
Only 34.4% state that formal education at an educational institution is
important or very important.”

RQ1:99% of the respondents agree that self-study was important or
very important (60% suggested that learning from peers is important
or very important). However, 35% of the respondents believe that formal
education is important or very important.

RQ2: “The importance of graduate studies is clearly greater than
undergraduate studies. This, in turn, is clearly greater than that of high
school studies. Formal training at work was considered as important or
very important for only 13.1%.”

RQ2: Similarly, most of the respondents believe that graduate studies
(72%) and their last five years at work (76%) were important or very
important to learn what they know about software development. Our
respondents also perceived High school (61%) and over the last 15 years
at work (51%) as not important or not important at all.

RQ3: “84.3% of the responses state that developing scientific software
is important or very important for their own research. 46.4% state that
developing scientific software is important or very important for the
research of others.”

RQ3: 86% of the respondents believe that scientific software is im-
portant or very important to their own research. However, 63% of our
respondents stated that developing software for the research of others is
important or very important.

RQ4: “On average, scientist spend approximately 30% of their work
time developing scientific software.”

RQ4: On average, our respondents spent 30% of their working hours
developing software per week (min: 0%, 1st quartile: 10%, median: 20%,
max: 100%, std dev: 23.73%).

RQ5: “53.5% of the respondents state that they spend more or much
more time developing scientific software than they did 10 years
ago (44.7% spend more or much more time than they did 5 years
ago and 14.5% spend more or much more time than they did 1 year ago.”

RQ5: 82% of the respondents believe that they spend “much more
time” or “more time” developing software than 10 years ago; 72% when
compared to the last five years. Over the last decade, there is also an
increase in activity, in terms of commits, in the studied projects.

RQ7: “Scientific software is either used by a very large number of
people (more than 5,000 users) or by a very small number of people
(less than three).”

RQ7: Our respondents work mostly alone (53% of the respondents
develop software alone) or in small teams (another 42% develop software
within a team of two to five). At maximum, we found 723 stars and 139
forks in the analyzed projects

RQ8: “The level of importance that scientists assigned to a software
engineering concepts is mostly consistent with their understanding of
this concept. Except for “software testing” and “software verification”
scientists assigned a higher level of importance to these concepts than
they judged understand.”

RQ8: Generally speaking, we observed that the respondents judged they
knew less about the concepts of what they believe are important. A Chi-
Square test confirmed that the scientist knowledge depends from what
they judge important.

RQ9: “There is no consistent trend of association that links an increase
of project or team size to perceived importance of software engineering
concepts.”

RQ9: After performed the ANOVA test, we could not reject the null
hypothesis that project and team size influences the respondent’s percep-
tions about the software engineering concepts, once all p-values were
higher than 0.05.

scientists use for software development, how do they docu-
ment code, and how do they employ testing and verification
practices.

Perceptions about software engineering training, practice,
and importance. Software design (e.g., data structures and
object oriented programming) and software engineering meth-
ods (e.g., software maintenance and software testing) are at
the core of software engineering practice [21], although many
studies suggest that software engineers only master them at
their jobs [21], [22], [23]. Recent approaches leverage open-
source software [24] or even gamification [25] inside the
classroom to foster software engineering learning. Regarding
scientists training and practice, Segal [26] conducted several
field studies with scientists that develop software. According
to Segal, scientists develop scientific software in a very
iterative and incremental way. Requirements emerge, as the
understanding of both software and science evolves. There
is no explicit phase of requirements or evaluation. Testing
is not often employed. Segal also published other studies
comparing how scientific developers and software engineers
develop software [27], [28]. For example, Segal said that
scientists are not used to address software development ac-
tivities such as maintainability, modifiability, or portability.
Software engineers, on the other hand, expend a great effort

in addressing such issues.

Replications in software engineering. Da Silva et al. [29]
conducted a systematical review about replication on Software
Engineering. The authors reported that 133 replications were
performed between 1994 and 2010, based on 72 original stud-
ies. Software requirements, software construction, and soft-
ware quality concentrated over 55% of the replications, while
software design, configuration management, and software tools
and methods were the topics with the smallest number of
replications. According to authors, the number of replications
has grown in the last few years, but the absolute number of
replications is still small. Some of the recent replications focus
on either propose methodologies for conducting a replication
(e.g., [30], [7]) or, indeed, replicate an experiment (e.g., [31],
[31]). Pfahl et al. [32] conducted an external replication to re-
evaluated the learning effectiveness of using a process simula-
tion model to teach software project management to students.
Results suggest that students that used the simulation model
gained a better understanding about typical behavior patterns
of software development projects. Wesselen [31] replicated an
empirical study about how Personal Software Process (PSP)
influence the performance of an individual engineer. Both
the original study and the replication one were conducted
using data reported from the students that participated of the



PSP course. The studies differ in term of the programming
languages used, the class sizes, and the level of experience of
the students. The results from the replication confirm the ones
from the original study: PSP methods can help engineers, for
instance, to decrease defects occurrence.

IX. CONCLUSION

More often than never, scientists have to rely on software in
order to conduct their work. However, due to the innumerable
research topics that scientists with diverse backgrounds work
on, it is at least hard to find an appropriated tool (either
proprietary or open source) tailored to deal with scientists’
needs. As a consequence, scientists themselves have to get
their hands dirty to create such tools. In this replication,
we shed additional light on how scientists develop software.
Among the findings, we found that scientists work mostly
alone, they decide themselves what they want to work on
next, most of what they learnt came from self-study, rather
than a formal education, although their main activity is not
software development, they develop software on regular basis.
Admittedly, they concur on the importance of the software
engineering practices; nevertheless, they knew less about the
concepts of what they believe are important.

For future work, we plan to conduct another replica-
tion, but targeting a different community (e.g., developers of
LATEX macros). We also plan to conduct an in-depth investiga-
tion on scientific software projects, in order to cross-validate
some of the findings of this study.
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