
Platform Teams: An Organizational Structure
for Continuous Delivery

Leonardo Leite, Fabio Kon
University of São Paulo, Brazil

leofl@ime.usp.br,kon@ime.usp.br

Gustavo Pinto
Federal University of Pará, Brazil

gpinto@ufpa.br

Paulo Meirelles
Federal University of São Paulo, Brazil

paulo.meirelles@unifesp.br

ABSTRACT
Software-producing organizations are seeking to release faster and
more efficiently new versions of their products to their customers
to remain competitive in the fierce software market. Continuous
delivery practices arise as a potential solution since every commit
to the repository could result in a production-candidate version of a
product, accelerating time to market, and improving customer satis-
faction. In this work, we employed Grounded Theory to investigate
how organizations pursuing continuous delivery should organize
their development and operations teams. We collected data from 27
IT professionals. After a careful analysis, we started the elaboration
of a taxonomy with four patterns of organizational structures: (1)
siloed departments, (2) classical DevOps, (3) cross-functional teams,
and (4) platform teams. We observed that the platform team struc-
ture is the most distinctive classification of our taxonomy, and it has
promising results regarding delivery performance. Some relevant
aspects we found out about platform teams include: infrastructure
specialists need coding skills; product teams have to operate their
business services; and much of the non-functional concerns are
handled by the platform, alleviating product teams.

CCS CONCEPTS
• Software and its engineering→ Software development pro-
cessmanagement;Programming teams; Software post-development
issues.

KEYWORDS
Continuous Delivery, Release Process, DevOps, Software Teams
ACM Reference Format:
Leonardo Leite, Fabio Kon, Gustavo Pinto, and Paulo Meirelles. 2020. Plat-
form Teams: An Organizational Structure for Continuous Delivery. In
,. ACM, New York, NY, USA, 7 pages. https://doi.org/xx.xxxx/xxxxxxx.
xxxxxxx

1 INTRODUCTION
Many software organizations are looking for ways to achieve rapid
release delivery to get their products and new features to their
customers faster and more efficiently. In this context, continuous

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RCoSE 2020, 6th International Workshop on Rapid Continuous Software Engineering,
May 26, 2020, Seoul, South Korea
© 2020 Association for Computing Machinery.
ACM ISBN yyy-y-yyyy-yyyy-y/yy/yy. . . $0.00
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

delivery practices become increasingly important, mostly due to
their benefits, such as accelerated time to market [3]. The automa-
tion that continuous delivery introduces creates a profound impact
on various aspects of the software engineering practice (e.g., devel-
opment, testing, deployment) [23]; it also impacts the organizational
structure [3] since release activities involve many divisions of a
company (e.g., developers, operations, and business).

Therefore, organizations moving toward continuous delivery
have not only to upgrade their software tooling arsenal but also find
ways to better shape and integrate their IT teams. Such integration
can occur according to different patterns that we call organizational
structures. However, there is no substantial literature tackling how
organizations should structure their teams to excel in the context
of continuous delivery. This lack of research is particularly unfor-
tunate due to at least two crucial reasons: (i) organizations wishing
to adopt continuous delivery can be disoriented regarding how to
design their human resources structure toward this goal; (ii) once
a structure is chosen, the organization might be unaware of the
consequences of this choice. The existing literature presents some
classifications for organizational structures [15, 18, 25]. Although
some of these works are empirical studies, the presented options of
structures are an arbitrary start point for them, lacking empirical
elaboration.

To mitigate this gap, our research efforts employ empirical meth-
ods to answer our main research question “which organizational
structures are software-producing organizations adopting for man-
aging IT technical teams in a continuous delivery context?” In this
short paper, containing preliminary results, we partially answer
our research question by presenting the most distinctive of these
structures.

By employing Grounded Theory [7] and interviewing 27 IT
professionals, we discovered four organizational structures: (i) tra-
ditional siloed departments, with high impedance for cooperation
among development and operations; (ii) classical DevOps, focus-
ing on the communication and collaboration among development
and operations; (iii) cross-functional teams, presenting all the re-
quired roles within a single team; and (iv) platform teams, exposing
highly-automated infrastructure services to assist developers.

The three first structures could already be somehow expected
according to the current DevOps literature [12] and models pub-
licly adopted by tech giants, such as Google [2] and Amazon [8].
In this sense, the most significant impact of our taxonomy for
practice is highlighting the platform team as a distinctive organiza-
tional choice. Thus, in this paper, we focus on describing the
platform team structure, with its practical implications, such as
division of responsibilities, communication, bottlenecks, monitor-
ing, and incident handling. Some relevant aspects we found out
about platform teams are:

https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

RCoSE 2020, 6th International Workshop on Rapid Continuous Software Engineering, May 26, 2020, Seoul, South Korea Leite et al.

• Infrastructure specialists need coding skills;
• Product teams have to operate their business services;
• Many non-functional concerns are handled by the platform,
alleviating product teams;

• The platform acts as a façade for public clouds or internal
infrastructure.

Another reason for drawing attention to platform teams is that
the collected data indicate that organizations embracing this model
achieve better delivery performance results.

2 DELIVERY PERFORMANCE
Delivery performance is a combination of three metrics: frequency
of deployment, time from commit to production, and mean time
to recovery [5]. Delivery performance also correlates to the or-
ganizational capability of achieving higher-level (commercial and
noncommercial) goals [5]. We used this construct in our research
as an indication of how successful the organization has been in
adopting continuous delivery. We, therefore, asked each participant
in our study about the frequency of deployment, the time from
commit to production, and the mean time to recovery to define the
delivery performance in the interviewee’s context.

Based on a survey with 27,000 responses in 2017, Forsgren et
al. [5] applied cluster analysis to these metrics and discovered three
groups: High performers were characterized as having multiple
deployments per day, commits taking less than 1 hour to reach
production, and incidents repaired in less than 1 hour. Medium
performers deployed between once per week and once per month,
had a time from commit to production between one week and one
month, and took less than one day to repair incidents. Low perform-
ers presented the same characteristics of medium performers for
deployment frequency and time from commit to production, but
taking between one day and one week to repair incidents.

In our research, we are not interested in distinguishing medium
from lower performers; we are interested only in identifying high
performers and non-high performers. However, the above clus-
ters are problematic for our purpose since there is a gap between
the high and the medium performers clusters. We circumvent this
problem by considering an organization as a high performer if (i)
it is within the boundaries limiting the cluster of high perform-
ers defined above or (ii) it violates at most one high-performance
threshold by only one point in the scale adopted for the metric. The
scales for each metric are:
Frequency of deployment: multiple deploys per day; between once
per day and once per week; between once per week and once per
month; between once per month and once every six months; fewer
than once every six months.
Time from commit to production: less than one hour; less than one
day; between one day and one week; between one week and one
month; between one month and six months; more than six months.
Mean time to recovery: less than one hour; less than one day; be-
tween one day and one week; between one week and one month;
between one month and six months; more than six months.

Now we proceed, in Sections 3 and 4, to present our empirical
approach. The emerging taxonomy is briefly presented in Section 5,
while Section 6 describes in details the platform team structure.

We also present limitations of this work (Section 7), related works
(Section 8), and our conclusion (Section 9).

3 GROUNDED THEORY
Our research aims to generate a theory on organizational structures
in the context of continuous delivery. For this purpose, we employed
Grounded Theory (GT), a widely-used qualitative research approach
in software engineering [9, 21, 26, 28], whose focus is on generating
a theory rather than validating preconceived hypotheses. Since
there are multiple GT variants available, Stol et al. [26] advise
researchers to state which variant they adopt. In this paper, we
based our research approach on the seminal book “The discovery
of Grounded Theory” [7], which describes what is known as the
“classical Grounded Theory” [26].

The constant comparative method is the core of GT, relying on
rigorous analysis of qualitative data. Coding is the process of con-
densing original data in a few words with conceptual relevance.
The code is then compared to similar codes of the previous analysis,
giving emergence to theoretical concepts [7].

Besides the rigorous analysis of qualitative data, GT also relies on
the researcher’s theoretical sensitivity, the ability to have theoretical
insight into a substantive area. Our theoretical sensitivity comes
from direct experience in the IT industry and our previous works
on DevOps and software engineering [4, 12, 14, 24].

In GT, data collection and analysis are interspersed, so the emerg-
ing theory guides which data to sample next, considering gaps and
questions suggested by previous analysis. This process—called the-
oretical sampling—does not consider usual statistical notions of ver-
ification methods, such as significant samples. Instead, researchers
must establish the theoretical purpose of the sample, defining multi-
ple comparison groups, maximizing variation among groups to find
out similarities and minimizing variation to find out differences. We
approached theoretical sampling mainly by valuing the diversity
of people and organizations in our sample. Another application of
theoretical sampling we did was interviewing a company which
we expected to have cross-functional teams since we had only a
few interviewees presenting this structure.

Ideally, the researcher carries the analysis until theoretical satu-
ration is achieved, which means that new data does not meaningly
impact the theory elaborated until that moment. Since we are still
conducting more interviews to refine our theory further, we do
not claim to have already reached theoretical saturation. Nonethe-
less, the interviews conducted so-far were enough to discover and
characterize the platform teams, which is the subject of this paper.

4 INTERVIEWS
We applied the GT techniques on data acquired from interviews
with IT professionals. In this section, we present the processes
related to interview selection, conduction, and analysis.

Brainstorm sessions
We conducted what we called “brainstorm sessions” with seven

specialists based on our research question and concerns raised by
our survey on the DevOps literature [12]. We chose these experts
for their experience with DevOps and proximity to our research
group. These sessions helped to better shape the interview script,

Platform Teams RCoSE 2020, 6th International Workshop on Rapid Continuous Software Engineering, May 26, 2020, Seoul, South Korea

targeting concerns learned from these experts. After these brain-
storm sessions, we started the semi-structured interviews.

Selecting participants
We sent 45 interview invitations using a convenience approach:

the first invitations were contacts close to the network of our re-
search group. We also contacted other participants by indication of
our interviewees. The only requirement was that the participant
should work with continuous delivery or at least be implementing
efforts toward it. From the 45 invited professionals, we could inter-
view 20 of them. Following ethical procedures [27], we anonymized
all the interviewees and their organizations.

We employed several strategies to foster diversity and to en-
hance comparison possibilities in our sample. First, we interviewed
participants that worked in scenarios where it was particularly
challenging to achieve continuous delivery (e.g., IoT or defense
systems). Second, we tried to choose a broad range of organization
and interviewee profiles. For instance, we selected both small and
large companies (35% with more than 1,000 employees), private
and governmental companies, from different domains and coun-
tries. We covered men and women (35% of women) and also chose
interviewees with varying roles, such as developers, managers,
infrastructure specialists, and even a designer.

Table 1 shows the description of the participants (the numbers
on the left refer to the number of interviews). As one can see, this
table only presents an aggregated profile of participants. We took
this decision to hinder de-anonymization [21, 27]. Location refers to
where the interviewee’s team is located; we had a few participants
working remotely for globally distributed teams. Enabler team is a
specialized technical team that supports developers but does not
own any service. We could not know which companies contracted
the consultants’ services; therefore, our demographic evaluation
considers the company that employs the interviewee. The inter-
viewees worked in the following business domains: IoT, finances,
defense, public administration, justice, real estate, education, Inter-
net, big data, research, cloud, games, mobility, office automation,
software consulting, and support to software development.

Table 1: Description of participants and their organizations.

Role Degree
#9 Developer #11 Undergraduate
#3 Development manager #9 Masters
#2 Infrastructure manager Location
#2 External consultant #11 Brazil
#1 Infrastructure engineer #4 USA
#1 Executive manager #3 Globally distributed
#1 Enabler team member #1 Germany
#1 Designer #1 France

Gender Organization size
#13 Man #9 From 200 to 1000 employees
#7 Woman #7 More than 1000 employees
Time since graduation #4 Less than 200 employees

#11 More than 10 years Organization type
#5 From 5 to 10 years #17 Private for profit
#4 Less than 5 years #2 Governmental
#1 Private nonprofit

Conducting semi-structured interviews
Our goal is to discover existing organizational structures and

not verifying in the field a preconceived set of structures. In this
way, we conducted semi-structured interviews [1], avoiding using
only closed questions. The set of questions that we used to guide
the interviews are available online1.

Before starting the interviews, we built an interview protocol
to guide the process based on our previous experience with inter-
views [4], on other relevant works [1, 9], and on the tips offered by
ijnet2, a website for journalists. The interview protocol also con-
tains the questions that drove the interviews, which were derived
mainly from the brainstorm sessions and our survey of the DevOps
literature [12]. The themes addressed by the interview questions
were the following: (i) interviewee company and role; (ii) responsi-
bility for deployment, building new environments, non-functional
requirements, configuring and tracking monitoring, and incident
handling, especially after-hours; (iii) which cloud vendor is used;
(iv)whethermicroservices are used or not; (v) delivery performance;
(vi) future improvements in the organization; (vii) effectiveness of
inter-team communication; (viii) inter-team alignment for the suc-
cess of the projects; (ix) description of DevOps team or DevOps role,
if existing; (x) the existence and sharing policy for specialized roles,
like security or database; and finally (xi) practices about knowledge
acquisition and sharing.

Analyzing the interviews
We followed the core Grounded Theory principles of constant

comparative method and coding, which are intended to discipline the
creative generation of the theory. During this process, we created
two artifacts for each interview: the transcripts and the codes.
Transcripts. We heard each audio record and transcribed it. We did
not transcribe the full interview. Instead, we synthesized relevant
parts of the interviews, excluding minor details and meaningless
noise [6], while preserving some interesting excerpts. For instance,
from one interview, we transcribed the following part of the con-
versation:

If you break the SLA, there are consequences. You have to improve things;
you can’t go back to feature development until SLA has recovered. Any problem
in final service: developer is paged. If it’s infrastructure-related, developers
call the infrastructure team. And we solve together. We try to help anyway,
because at the end of the day if users can’t use the system, we all suffer.

Codes.After transcribing, we then derived the coding by condensing
the transcripts in a few words. The above fragment of transcription,
for example, led to the following coding:

Developers → owns the availability of their services
Broken SLA→ blocks feature development
Broken SLA→ page for developers
Broken SLA→ if needed, calls infra

Finally, by analyzing, comparing, and using all the coding, we
started to elaborate our taxonomy, the theory itself. Coding is
carried by one researcher and reviewed by the other ones, while the
taxonomy elaboration is paired by two researchers and reviewed
by the other ones.

1http://ccsl.ime.usp.br/devops/2020-03-11/interview-questions.html
2ijnet.org/en

http://ccsl.ime.usp.br/devops/2020-03-11/interview-questions.html
ijnet.org/en

RCoSE 2020, 6th International Workshop on Rapid Continuous Software Engineering, May 26, 2020, Seoul, South Korea Leite et al.

5 THE TAXONOMY FOR ORGANIZATIONAL
STRUCTURES

Our grounded taxonomy for organizational structures has four key
elements: (i) siloed departments, (ii) classical DevOps, (iii) cross-
functional teams, and (iv) platform teams. In this section, we briefly
describe the three first structures, while we shall describe platform
teams in more detail in the next section. Table 2 indicates the found
organizational structures and achieved delivery performance in our
interviews. As we discuss in Section 6.1, this table indicates that all
the interviewed organizations having consolidated platform teams
also have a high delivery performance. In this paper, interviews are
signaled by a token in the format “#IN ”; thus, “#I2”, for example,
refers to the second interview or interviewee; brainstorm sessions,
those conducted before the interviews, are indicated as “#BN ”.

Table 2: Observed organizational structures and their associ-
ated delivery performance

Organizational Delivery Interviews Number
structure performance of interviews

Siloed departments Not-high #I5 #I7 #I10 6
#I13 #I15 #I19

Siloed departments High #I20 1
(adopting a platform)
Siloed departments Not-high #I8 1
(adopting a platform)
Classical DevOps High #I2 #I17 2
Classical DevOps Not-high #I6 #I11 #I18 3
Classical DevOps Not-high #I14 1
(adopting a platform)
Cross-functional High #I1 1
Cross-functional Not-high #I3 1
Cross-functional Not-high #I16 1
(adopting a platform)
Platform team High #I4 #I9 #I12 3

5.1 Siloed departments
With siloed departments, developers and infrastructure specialists
are segregated from each other; there is little face-to-face commu-
nication among these groups, and blaming each other for failures
is commonplace. In our interviews, we found eight organizations
adhering to this organizational structure.
Characteristics. Developers and operators have well-defined and
different roles. Developers have a minimal vision of what happens
in production; monitoring and handling incidents are mostly done
by the infrastructure team. Developers often neglect non-functional
requirements (NFR); security can be seen as an infrastructure con-
cern only. DevOps initiatives are centered on adopting continuous
integration tools rather than improving collaboration among silos.
As a consequence, communication and collaboration among teams
are hard.

5.2 Classical DevOps
The classical DevOps structure follows the initial intents of the
DevOps movement by focusing on collaboration among developers

and the infrastructure team; it approximates people and breaks
down the walls, as it is so vividly devised in the novel “The Phoenix
Project” [11]. We consider that the SRE model from Google [2] is
a Classical DevOps structure: there are developers from one side
and SREs (infrastructure specialists) on the other side, but they
collaborate well for the project success. We found six organizations
adhering to this organizational structure.
Characteristics. Roles remain well-defined, although developers
and operators are closer (e.g., for database management, infrastruc-
ture staff creates and tunes the database, whereas developers write
queries and manage the schema), which fosters a culture of collabo-
ration. Usually, there are no conflicts regarding who is responsible
for each task. DevOps is achieved through a delivery pipeline. NFR
responsibilities are shared among developers and the infrastructure
team. However, the infrastructure staff is still on the front line of
tracking monitoring and incident handling.

5.3 Cross-functional teams
This structure is aligned with the Amazon motto “You built it, you
run it” [8]. This gives more freedom to the team, along with a great
deal of responsibility. We found three organizations adhering to
this organizational structure.
Characteristics. A single team encompasses both developers and
infrastructure specialists to take total responsibility for the life cycle
of a set of services. This structure is the one that most supports com-
munication and collaboration among people with different skills.
Everyone in the team can be assigned to incident handling. The
challenge here is to guarantee that each unit has all the necessary
skills.

6 PLATFORM TEAMS
Platform teams are infrastructure teams that provide highly
automated infrastructure services that can be self-serviced
by developers for the deployment of new services, usually
microservices. In this organizational structure, the infrastructure
team is no more a “support team”; it behaves like a product team,
having the “platform” as its product and developers as internal
customers. Figure 1 conceptually illustrates this structure, with
rectangles representing concepts and rounded boxes representing
conceptual properties.

Throughout our semi-structured interviews, we found three orga-
nizations fully embracing this model. The other four organizations
are in the process of adopting the platform model. Nevertheless,
we could observe most of the platform team characteristics in these
transitioning organizations. Although we did not classify the orga-
nizational structures of the brainstorm sessions, we also perceived
the platform team pattern in three of these sessions. In total, from
the 27 professions we talked to, we discussed this structure with
ten of them (two of them working in the same company). Five of
these organizations have more than 1,000 employees and four of
them between 200 and 1,000 employees.

We observed the following practical implications (PI) for organi-
zations having a platform team:
PI#1) Product team are fully accountable for the non-functional
requirements of its services. The product team becomes now the

Platform Teams RCoSE 2020, 6th International Workshop on Rapid Continuous Software Engineering, May 26, 2020, Seoul, South Korea

Product teams

Platform team

Infrastructure services

use

On call for infrastructure services.

(Product teams on call for

final services.)

Devs are responible

for NFR / manage

database directly

demand new

features for

 self-serviced for /

 provides

autonomy for

decoupled from /

not bottleneck for /

can help and

 collaborate with

when

offers

Avoid

bottlenecks

Provide monitoring

Solve a lot

of NFR problems

Public cloud infrastructure

(.e.g., AWS)

façade forLocal infrastructure

(possibly with kubernetes)

façade for

Figure 1: Conceptual illustration of platform teams

first one to be called when there is an incident; the infrastructure
people are escalated if the problem is related to some infrastructure
service. This situation differs from the Classical DevOps scenario,
in which usually the infrastructure staff is the first one to take care
of any incident, summoning developers only if needed.
PI#2) Developers are not afraid of NFR concerns. Although the prod-
uct team becomes fully responsible for NFRs of its services, it is
not a significant burden that developers try to refuse. It happens
since the platform itself handles many NFR concerns, such as load
balancing and auto-scaling. Moreover, we saw cases that, despite
the decoupling among developers and infrastructure people pro-
vided by the platform, the infrastructure people are very supportive
in coping with developers for the sake of services availability and
performance.
PI#3) Product teams become decoupled from the members of the
platform team. Usually, the communication among these teams
happens when developers and infrastructure people are gathered
to solve incidents, as we saw in #I9; when infrastructure people
provide consulting for developers for mastering non-functional
concerns, as observed in #I9; or when developers demand new
capabilities from the platform, as noticed in #I12. In this way, the
decoupling between the platform and product teams does not imply
the absence of collaboration among these groups.
PI#4) The infrastructure team is no more requested for operational
tasks. Therefore, we cannot merely call platform-team members as

“operators” since they also engineer the infrastructure solution. We
remark that, in other industries, “operator” is a title attributed to me-
nial workers. This characteristic also matches the SRE philosophy
of reducing toil work.
PI#5) In general, product teams do not need to encompass infrastruc-
ture specialists. The existence of a delivery platform avoids the need
for product teams having infrastructure specialists, as it would be
the case for cross-functional teams. On the other hand, since devel-
opers are responsible for the deployment, it requires developers to
have some basic knowledge about the infrastructure and mainly
the platform itself, differently from a siloed structure.
PI#6) However, sometimes there are infrastructure operators within
the product team.When using a platform, the complexity of a spe-
cific application might require the product team to behave like a
fully cross-functional team, having infrastructure operators (#I16).
PI#7) Infrastructure specialists possess coding skills. If the organiza-
tion develops a new platform to deal with its specificities, it will
require development skills from the infrastructure team. Neverthe-
less, even without developing a new platform, the infrastructure
team must have a “dev mindset”, so it can produce scripts and use
infrastructure-as-code [16] to automate the delivery path. One strat-
egy we saw to cope with this need in #I14 was to hire previous
developers for the infrastructure team.

The platform team structure contrasts with the other ones for the
following reasons: different from cross-functional teams, there is
an infrastructure team; different from classical DevOps, developers
consume infrastructure as a service and operate their services; and
different from siloed departments, platform teams cultivate an open
dialogue with developers.

6.1 Discussion
We observed, as summarized by Table 2, organizations with plat-
form teams presenting the best outcomes in terms of delivery per-
formance. All the three organizations that have fully embraced the
platform team structure are high performers, while no other struc-
ture provided such property. In particular, the only high-performer
siloed organization is adopting a platform structure.

An explanation for the relationship among the platform team
structure and delivery performance is that this structure decouples
the infrastructure and the product teams. This decoupling prevents
the infrastructure team from becoming a bottleneck in the deliv-
ery path; at the same time, the platform provides the necessary
power to developers to operate their services without the need for
further specialization in infrastructure. As stated by #I20: “Devel-
opers can’t hide behind this anymore. Now they have autonomy for
going from zero to production without having to wait for anyone.”
The platform team structure also contributes to increase service
reliability by placing the product team in the front-line of handling
non-functional requirements and incidents. Therefore, we claim
that having a platform team is a promising way to achieve high
delivery performance.

As stated by #B5, “the idea is to facilitate the life of development
teams: they get these [monitoring] dashboards for free, without effort.”
#I16 provided some examples of issues handled by the platform,

RCoSE 2020, 6th International Workshop on Rapid Continuous Software Engineering, May 26, 2020, Seoul, South Korea Leite et al.

such as throttling and high-speed communications between data-
centers. In this way, the platform contributes to developers being
autonomous and accountable for managing their services3.

There is a recent trend in discussing NoOps, which some con-
sider being a structure in which a dedicated operations team is not
needed anymore, given the current high degree of infrastructure
automation [20]. We consider that adopting platform teams moves
in this direction. If each team operates its own services, whether
business or infrastructure services, then there is no such thing as
operators supporting a service built by someone else.

In some cases, we observed organizations ultimately deploying
applications on public clouds, such as AmazonWS or Google Cloud.
Although these clouds allow easier deployment when compared to
managing physical servers, they still offer dozens of services and
a multitude of configurations. The in-house platform standardizes
the usage of public cloud vendors within the organization in such
a way that developers do not need to understand so many details
about the cloud. Interviewee #I16 mentioned that “the [platform]
value is adding services that are actually enhancing the usability of
the [cloud] infrastructure.” Thus, in such scenarios, we state that the
platform can be seen as a “cloud façade.” As an example, Nubank
has publicly talked in events about having a platform team (or
platform squad, as it is called there) operating over a public cloud 4.

As reported by #B1, #I1, #I8, #I12, and #I20, there are also plat-
forms built on top of internal physical servers, hiding from de-
velopers such infrastructure complexities as the use and even the
existence of Kubernetes, an open-source platform used for manag-
ing the lifecycle of Docker containers. An example of a publicly
known platform like this is Estaleiro5 from Serpro (the largest Latin
American public software-producing organization). However, one
should note that these platforms cannot be seen as silver bullets. For
instance, #B1 reported that not every project he worked on could
be deployed in the Kubernetes platform, given security restrictions
associated with specialized hardware and network isolation.

We also observed a small company, in #I14, with a “platform
mindset”, but without the resources to build a platform of its own.
In this case, we saw the usage of an open-source platform, Rancher6,
and the infrastructure team preparing Terraform7 templates encom-
passing good practices, so developers would need only to provide
a few data fields for deployment. Rancher, a graphical façade for
developers to interact with Kubernetes, was also adopted in #I20.

Although the organization of #I20 did an excellent job in transi-
tioning to a platform structure and achieving high-delivery perfor-
mance, according to the interviewee, the “old world” still coexists
with the “new one.” In the same way, as reported by Nybom et
al. [18], there are some responsibility conflicts and “dissident forces:”
some operations people do not like developers with administrative
powers, while some developers do not want such powers. The inter-
viewee declared that “it’s not yet ‘everybody together’; some people
are still worried about covering their sides.” This example shows
how, despite all the benefits earned, transitioning structures in

3#I9 referred to whoownsmyavailability.com.
4https://www.youtube.com/watch?v=iZ1taqc5-G8,
https://www.youtube.com/watch?v=gqXzvVJXfoY
5https://pt.slideshare.net/rikatz/estaleiro-o-uso-de-kubernetes-no-serpro
6http://rancher.com
7http://terraform.io

large organizations is a hard endeavor. It also shows how technical
solutions do not dismiss a culture of collaboration.

7 LIMITATIONS
This work has many limitations. First, we cannot claim full general-
izability. Our work is limited by the number of interviews, and the
context of the participants. We mitigate this limitation by choosing
participants working on different companies and with different
levels of skills. Moreover, our method, Grounded Theory, does
not guarantee that two researchers working in parallel with the
same data would achieve identical results [7]. Still, this method
was applied by only one researcher (although revised by another
research).

Regarding our definition of high delivery performance, although
we relied on previous work [5], we needed to adapt the original
definitions due to the reasons exposed in Section 1. Therefore, by
tweaking the descriptions related to delivery performance, one
could reach different conclusions based on the same data we have.
Another issue with delivery performance is that although a high
performance is a good indicator of a well functioning software-
producing organization, not achieving high performance cannot
necessarily be seen as a bad indicator, since organizations can have
its reasons to limit the deployment frequency, including business
decisions.

We are aware that large companies usually present groups at dif-
ferent maturity levels, and that they could be classified differently
if we took different interviewees. To verify this, we interviewed
two persons from the same company (#I16 and #I18). Indeed, the
organizational patterns were not identical. Therefore, the reader
must note that our descriptions do not characterize the whole or-
ganizations, but the contexts observed by our respondents. In #8,
for example, the interviewee works in an enabler team, and the re-
ported delivery performance is the typical case he is used to observe
despite the existing variability within the organization.

8 RELATEDWORK
There is a recent research track discussing the usage of contin-
uous delivery practices [3, 13, 17, 19, 22]. Benefits perceived by
these works include accelerated time to market, improved produc-
tivity and efficiency, faster feedback to development, enhanced
customer satisfaction, and a more predictable defect rate [3, 13, 17].
On the other hand, some challenges are coordination of supplier
integration, business models, and difficulty in overviewing project
status [19]. Chan et al. state that, in the adoption of continuous de-
livery, organizations may also have to deal with challenges that are
not only technical but also organizational and process-related [13].
However, it is so far unclear what constitutes a functional char-
acterization of development and operations teams that excel in
continuous delivery practices.

The literature about the classifications of organizational struc-
tures for managing IT technical teams in continuous delivery or
DevOps contexts is limited [10, 15, 18, 25]. In all these related works,
the presented sets of structures are arbitrary, without considera-
tions about how they were conceived. Distinct from them, we found
the organizational structures through a systematic research process
based on field observations. Nybom et al. present three distinct

whoownsmyavailability.com
https://www.youtube.com/watch?v=iZ1taqc5-G8
https://www.youtube.com/watch?v=gqXzvVJXfoY
https://pt.slideshare.net/rikatz/estaleiro-o-uso-de-kubernetes-no-serpro
http://rancher.com
http://terraform.io

Platform Teams RCoSE 2020, 6th International Workshop on Rapid Continuous Software Engineering, May 26, 2020, Seoul, South Korea

scenarios to DevOps adoption [18]: (i) mixing development and op-
erations responsibilities among all engineers; (ii) mixing personnel,
but keeping existing roles differentiated; and (iii) creating a DevOps
team as a bridge between development and operations. None of
them seems to indicate a platform team.

The third implicit organization scheme presented by Humble and
Molesky envisions an operations group acting as a product team
offering support services (continuous integration, monitoring ser-
vices, etc.) to the entire organization [10]. This structure somehow
resembles the platform team structure, but in a more limited way,
without considering a highly automated way for product teams
creating new services.

The 2018 State of DevOps Report surveys respondents about the
organizational structures used in their DevOps journeys, offering a
closed set of alternatives to answer the question [15]. However, the
text does not fully explain the options; it only presents the names
of the proposed organizational structures. In this way, associating
the platform team to one of the structures presented by the survey
would be a too error-prone activity.

Finally, Skelton and Pais present “DevOps topologies” and De-
vOps anti-patterns [25], being the most informal of our compari-
son sources – a blog post. However, the DevOps topology Type 3
seems to fit our platform team definition. This topology is named
“Ops as Infrastructure-as-a-Service (Platform)” and presents “opera-
tions as a team who simply provides the elastic infrastructure on
which applications are deployed and run; the internal Ops team
is thus directly equivalent to Amazon EC2, or Infrastructure-as-
a-Service.” However, the presentation is too short, not presenting
further details about how organizations are applying this topology.
Moreover, from an academic perspective, it is also not desirable
the opinion-based judgment that the authors do to separate good
DevOps topologies from DevOps anti-patterns. We also note that
the term “platform” emerged from our interviewees.

9 CONCLUSION
Continuous delivery is a practice that helps developers accelerate
project time to market since every commit could potentially release
a new version of the software. However, it is not clear how software
teams should be organized to take real advantage of this practice
(e.g., should developers assume infrastructure roles?). We inter-
viewed 27 developers that are facing or transitioning to continuous
delivery. After understanding the organization of teams, we intro-
duced the concept of “platform teams.” In this structure, according
to our observations, an infrastructure team delivers highly auto-
mated infrastructure services that are used by product teams. Such
infrastructure services decrease the necessity for product teams to
include infrastructure specialists and promote high delivery perfor-
mance.

ACKNOWLEDGMENTS
This research was supported by CNPq (proc. 465446/2014-0, 309032/
2019-9, and 406308/2016-0), FAPESP proc. 15/24485-9, and FAPESPA.

REFERENCES
[1] William C. Adams. 2010. Conducting semi-structured interviews. In Handbook

of Practical Program Evaluation (3rd ed.). Jossey-Bass.

[2] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. 2016. Site
Reliability Engineering: How Google Runs Production Systems. O’Reilly Media.

[3] Lianping Chen. 2015. Continuous Delivery: Huge Benefits, but Challenges Too.
IEEE Software 32, 2 (2015), 50–54.

[4] Daniel Cukier and Fabio Kon. 2018. A maturity model for software startup
ecosystems. Journal of Innovation and Entrepreneurship 7, Article 14 (2018).

[5] Nicole Forsgren, Jez Humble, and Gene Kim. 2018. Measuring Performance. In
Accelerate: The Science of Lean Software and DevOps: Building and Scaling High
Performing Technology Organizations. IT Revolution Press.

[6] Svetla Georgieva and George Allan. 2008. Best Practices in Project Management
Through a Grounded Theory Lens. The Electronic Journal of Business Research
Methods 6, 1 (2008), 43–52.

[7] Barney Glaser and Anselm Strauss. 1999. The discovery of grounded theory:
strategies for qualitative research. Aldine Transaction.

[8] Jim Gray. 2006. A conversation with Werner Vogels. ACM Queue 4, 4 (2006),
14–22.

[9] Rashina Hoda and James Noble. 2017. Becoming Agile: A Grounded Theory of
Agile Transitions in Practice. In 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE ’17). 141–151.

[10] Jez Humble and Joanne Molesky. 2011. Why enterprises must adopt DevOps to
enable continuous delivery. Cutter IT Journal 24, 8 (2011), 6.

[11] Gene Kim, Kevin Behr, and George Spafford. 2018. The Phoenix Project: A Novel
about IT, DevOps, and Helping Your Business Win (3 ed.). IT Revolution Press.

[12] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles.
2019. A Survey of DevOps Concepts and Challenges. Comput. Surveys 52, 6
(2019), 127:1–127:35.

[13] Marko Leppänen, Simo Mäkinen, Max Pagels, Veli-Pekka Eloranta, Juha Itkonen,
Mika V. Mäntylä, and Tomi Männistö. 2015. The highways and country roads to
continuous deployment. IEEE Software 32, 2 (2015), 64–72.

[14] Welder Pinheiro Luz, Gustavo Pinto, and Rodrigo Bonifácio. 2018. Building a
collaborative culture: a grounded theory of well succeeded DevOps adoption
in practice. In Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM 2018). 6:1–6:10.

[15] Andi Mann, Michael Stahnke Alanna Brown, and Nigel Kersten. 2018. 2018 State
of DevOps Report. https://puppet.com/resources/whitepaper/2018-state-of-
devops-report, accessed on Jul 2019.

[16] Kief Morris. 2016. Infrastructure as Code: Managing Servers in the Cloud. O’Reilly
Media.

[17] Steve Neely and Steve Stolt. 2013. Continuous Delivery? Easy! Just Change
Everything (Well, Maybe It Is Not That Easy). In 2013 Agile Conference. 121–128.

[18] Kristian Nybom, Jens Smeds, and Ivan Porres. 2016. On the Impact of Mixing
Responsibilities Between Devs and Ops. In International Conference on Agile
Software Development (XP 2016). Springer International Publishing, 131–143.

[19] Helena H. Olsson, Hiva Alahyari, and Jan Bosch. 2012. Climbing the "Stairway to
Heaven" – AMulitiple-Case Study Exploring Barriers in the Transition fromAgile
Development towards Continuous Deployment of Software. In 38th Euromicro
Conference on Software Engineering and Advanced Applications. 392–399.

[20] Margaret Rouse. 2015. NoOps Definition. https://searchcloudapplications.
techtarget.com/definition/noops, accessed on August 2019.

[21] Ronnie Santos, Fabio Silva, Cleyton Magalhaes, and Cleviton Monteiro. 2016.
Building a Theory of Job Rotation in Software Engineering from an Instrumental
Case Study. In 2016 IEEE/ACM 38th International Conference on Software Engi-
neering (ICSE ’16). 971–981.

[22] Gerald Schermann, Jürgen Cito, Philipp Leitner, andHarald C. Gall. 2016. Towards
quality gates in continuous delivery and deployment. In 24th IEEE International
Conference on Program Comprehension (ICPC). 1–4.

[23] Gerald Schermann, Jürgen Cito, Philipp Leitner, Uwe Zdun, and Harald C. Gall.
2016. An empirical study on principles and practices of continuous delivery and
deployment. PeerJ PrePrints 4 (2016), e1889.

[24] Rodrigo Siqueira, Diego Camarinha, Melissa Wen, Paulo Meirelles, and Fabio
Kon. 2018. Continuous Delivery: Building Trust in a Large-Scale, Complex
Government Organization. IEEE Software 35, 2 (2018), 38–43.

[25] Matthew Skelton and Manuel Pais. 2013. DevOps Topologies. https://web.
devopstopologies.com/, accessed on Jul 2019.

[26] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. 2016. Grounded Theory in Soft-
ware Engineering Research: A Critical Review and Guidelines. In 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE ’16). 120–131.

[27] Per Erik Strandberg. 2019. Ethical Interviews in Software Engineering. In Inter-
national Symposium on Empirical Software Engineering and Measurement 2019
(ESEM ’19).

[28] MichaelWaterman, James Noble, andGeorgeAllan. 2015. HowMuchUp-front?: A
Grounded Theory of Agile Architecture. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering (ICSE ’15). 347–357.

https://puppet.com/resources/whitepaper/2018-state-of-devops-report
https://puppet.com/resources/whitepaper/2018-state-of-devops-report
https://searchcloudapplications.techtarget.com/definition/noops
https://searchcloudapplications.techtarget.com/definition/noops
https://web.devopstopologies.com/
https://web.devopstopologies.com/

	Abstract
	1 Introduction
	2 Delivery performance
	3 Grounded Theory
	4 Interviews
	5 The taxonomy for organizational structures
	5.1 Siloed departments
	5.2 Classical DevOps
	5.3 Cross-functional teams

	6 Platform teams
	6.1 Discussion

	7 Limitations
	8 Related work
	9 Conclusion
	References

