A Study on the Most Popular Questions
About Concurrent Programming

Gustavo Pinto, Weslley Torres and Fernando Castor

Federal University of Pernambuco

{ghlp,wst,castor}Qcin.ufpe.br

Abstract

Concurrent programming is notably known as a hard dis-
cipline. Over the last few years, great strides have been
made in improving concurrent programming abstractions,
techniques, and tools to ease concurrent programming prac-
tice. However, little effort has been placed on assessing what
are the real-world problems faced by developers when writ-
ing concurrent applications. In this paper, we describe an
empirical investigation of the top-250 most popular ques-
tions about concurrent programming on STACKOVERFLOW.
We categorize them using a thematic analysis methodology.
We observed that even though some questions (22.94% of
them) are related to practical problems (e.g., “how to fix this
concurrency bug”), most of them (66.23%) are asking for
help in the basics concepts of concurrent programming (e.g.,
“what is a mutex?”). Although most of the questions are re-
lated to basic concepts, such questions were created by well-
experienced STACKOVERFLOW users. Curiously, we did not
find any question about how to use concurrent programming
techniques to improve application performance.

1. Introduction

Although the idea of concurrency and parallelism has been
around since the first computer [24], multicore processors
became mainstream roughly a decade ago, when AMD and
Intel started selling dual core processors for desktops. To
better leverage multicore technology, applications must be
concurrent, which poses a challenge, since it is well-known
that concurrent programming is hard [14, 23]. To mitigate
the burden of concurrent programming, great strides have
been made in introducing new concurrent programming
frameworks [12], models [9], and also empirical studies

[Copyright notice will appear here once ’preprint’ option is removed.]

on, for instance, how developers use/misuse concurrent pro-
gramming constructs [16, 21], as well as performance [2],
programmer effort, satisfaction and error-proneness [1 7] and
even energy consumption [20] evaluations.

Even though several studies have been conducted on the
concurrent programming arena [2, 9, 20], to the best of our
knowledge, there is a lack of studies targeting what are the
real-world problems faced by application developers when
writing concurrent applications. Although Lu et al. [13] pro-
vided a comprehensive taxonomy of concurrency bugs, the
authors used a high-quality number of bug reports as their
dataset, which are mostly created by advanced program-
mers [7]. In this study, however, we focus on STACKOVER-
FLOW. As one of the most popular website about software
development, STACKOVERFLOW, instead a place for experts
only, contains a diverse range of software developers [15].

This critical direction deserves more investigation due to
at least two reasons: (1) without an understanding of the
needs of developers and the challenges they face, researchers
may be naively focused on solving problems that, albeit in-
teresting, are faced by few developers in practice; and (2) the
conceptually incorrect views they hold may inspire educa-
tors to develop more state-of-the-art curricula. In particular,
we are interested in the following research questions:

RQ1 What are the most popular problems faced by software

developers when writing concurrent software?

RQ2 What are the concurrent programming concepts that soft-

ware developers want to know more about?

RQ3 What are the unanswered questions about concurrent pro-

gramming?

To answer these RQs, we provide a comprehensive list
of the top-250 most popular questions about concurrency
asked in STACKOVERFLOW. We chose the top most pop-
ular questions instead of, for instance, a random sample,
because these questions are more often visualized (by both
registered and non-registered STACKOVERFLOW users). We
then believe that we can reach a larger number of real-world
programmers interested in concurrency. Moreover, we also
believe that the popularity of the questions can be seen as
a proxy for the popularity of concurrency-related problems.

2015/8/16

As mentioned elsewhere, these questions capture a problem
that developers experienced [10].
The main findings of this study are the following:

— Our group of questions have 4.99x more answers, are
marked as favorites 21.49x more often, and have 41.97x
more views, 62.33x more “up-votes”, and 1.43x more
comments than the average questions on STACKOVER-
FLOW . Most of our questions (59.74% of them) and their
answers (44.50% of them) are old (from 2008 to 2009).
STACKOVERFLOW users who asked such questions are
well-experienced rather than novice programmers.

— We observed that most of questions are about well-
established concepts. Threading and synchronization is-
sues are the most common ones. Advanced concepts,
such as software transactional memory, are never men-
tioned. Also, albeit useful for the game industry, GPU
programming was mentioned by only one question.

— We found out that, even though all questions have an-
swers, some questions do not have an accepted answer.
Interestingly, only the minority of them (17.85%) require
an in-depth concurrent programming knowledge. The re-
maining ones do have comprehensive candidates of ac-
cepted answers, but the STACKOVERFLOW use who cre-
ated the questions did not mark any answer as accepted.

2. Methodology

Our data collection follows a mixed-method approach, col-
lecting both quantitative and qualitative data. Using the
STACKEXCHANGE! website, we are able to run queries in
the most up-to-date STACKOVERFLOW database. Using this
database, we extracted questions, answers, tags, and other
metadata. The data reported in this paper are based on ques-
tions that were asked between August 15, 2008 and October
6, 2014. The first date is related to when STACKOVERFLOW
was first launched, and the second one was when we ran the
query. An initial search reveals that the “concurrency” topic
has more than 22,000 questions. This fact prevents a manual
analysis far from being successful.

Instead, we decided to carefully select and analyze the
top-250 most popular questions — that is, about 1% of
the overall concurrency-related questions. In order to effec-
tively identify this curated list, we first queried the questions
that have at least one concurency-related keyword among
its tags. We did not filter in the body or in the title be-
cause of two reasons: (1) every question has at least one
tag, and (2) related questions will, with a high probability,
use a tag that is self-evident. We used the same set of key-
words used by Lu ef al. [13], which encompasses “race(s)”,

99 <

“deadlock(s)”, “livelock(s)”, “concurrency”, “lock(s)”, “mu-
9 13 2 13

tex(es)”, “atomic”, “compete(s)”, and “multithreading”. Fi-
nally, from the thousands of questions that contain at least

'http://data.stackexchange.com/

one keyword from the above keyword set, we filtered the
top-250 by using a popularity metric similar to one we em-
ployed in previous work [19], with some modifications:

P = GMEAN(S, A, C, F, V)

where S is the score (up-votes and down-votes) of the
question. The variables A, C, F and V are, respectively,
the number of answers, comments, favorizations, and the
number of views per question. We normalize each vari-
able to avoid distortions caused by very large absolute
values. Taking the V variable as an example, it is nor-
malized by the average of the number of views of the
overall STACKOVERFLOW questions, as follows: V =
questionsViews/stackOver flowViews. The other vari-
ables follow the same rule. The value of P is calculated
using a geometric mean (the GMEAN function) of the other
variables. According to Fleming and Wallace [4], the use of
geometric mean is favorable than an average.

After this automatic process, we manually checked them
to make sure that they are related to concurrent program-
ing. During this process, we found and removed 19 false-
positive questions. Example of such questions are question
Q3093962, which asks “Java: How to test methods that call
System.exit()?”, and question Q991904, which asks“Why is
there no GIL in the Java Virtual Machine? Why does Python
need one so bad?” .3

Hereafter we call this group of questions as our base
group, which encompasses 231 questions. Once the data is
collected, we extract reliable information using a thematic
analysis [3]. It has six steps:

1. Familiarization with data: At this stage, we analyzed
our base group of questions and their answers. When
a STACKOVERFLOW user mentioned very specific con-
struct or library, we have searched on internet forums and
in mailing lists in order to better familiarize with them.

2. Generating initial codes: Here we gave a code for each
question. This code tries to summarize the core of the
question. A question that asks for how to stop a thread
was coded as “Thread Life-Cycle”. We also refine codes
by combining and splitting potential codes.

3. Searching for themes: In this step, we already had a list
of initial themes (e.g., threading and synchronization),
but we begin to focus on broader patterns in the data,
combining coded data with proposed themes.

4. Reviewing themes: Here we have a potential set of
themes. We then searched for data that supports or re-
futes our themes. For instance, we initially themed the
question “How to wait for thread to finish with .NET??”

2The ‘Q309396” notation refers to the id of the question in STACK-
OVERFLOW, which can be translated to http://stackoverflow.com/
questions/309396 url. We use this notation throughout the paper.

3 For most cases, we kept the title of the question ipsis litteris. We added
the words in square brackets, though.

2015/8/16

http://data.stackexchange.com/
http://stackoverflow.com/questions/309396
http://stackoverflow.com/questions/309396

Table 1. The popularity of questions in each group of data.
’ # \ Base Group Median Std. Histogram ‘

S 62.39 4313 63.15 L‘
A 5.05 s 33 M

C 1.43 0.6 L_.
F 21.34 13.98 2334 L
\% 42.14 30.86 39.7 J.__
P 13.22 90.32 113.4 L

as “Practical Concepts”. However, we later realized that
this question would fit better as “Thread Life-Cycle”.

5. Defining and naming themes: Here we refined existing
themes. At this time, most of the themes had a name. We
renamed some of them to cover codes with few questions,
since we established 5 as the minimum number of repeti-
tions required to code be considered a theme.

6. Producing the final report: This process leads to 7 main
themes. We discuss each one in § 3.1.

3. Research Results

Before we discuss each research question, we provide quan-
titative aspects regarding our base group of questions. First,
we have compared the popularity of concurrent program-
ming questions with the remaining STACKOVERFLOW ques-
tions. We computed the popularity using the metric de-
scribed in the last section. Table 1 shows the results.

Since the value for each metric of the STACKOVER-
FLOW group is normalized to be 1 (thus the geometric mean
P for S=1, A=1, C=1, F=1, V=1 is also 1) we can observe
that questions from our base group are more than 13.22x
more popular when compared to the remaining questions
on STACKOVERFLOW. Among the individual variables, the
C variable is the only one which does not present a great
difference; it is only 1.43 times greater than the remaining
questions on STACKOVERFLOW. This fact is due to 88 ques-
tions that do not have a single comment. Since comments on
questions are mostly used to ask for clarifications, we can as-
sume that questions from the base group are well-elaborated.
This can also help us explain the great number of answer per
question (A is 5.05). All other variables present a consider-
able difference. We observed that the score of a question (the
S variable) presents the highest difference when compared
to the remaining questions on STACKOVERFLOW (S max:
540.62, min: 46.87, 3rd quartile: 160). It means that more
STACKOVERFLOW users are “upvoting” those questions.

Most of the questions in our base group were created be-
tween 2008 and 2009 (59.74% of them). We consider these

questions as old. This is not surprising. Once a question has
been answered, the community tries to avoid duplication by
pointing to the older question when new users ask it again.
From the 2,146 answers to these questions, 44.50% are old.

As regarding the answers of those questions, we calcu-
lated their popularity as PA = GMEAN(S, C). We observed
that comments presented a slight difference against the re-
maining answers on STACKOVERFLOW (C is 1.15), whereas
the score of these answers is 14.07x greater than the remain-
ing answers on STACKOVERFLOW . PA is 4.02.

3.1 RQI1. The most popular problems

In this RQ, we analyzed the titles and bodies of our base
group of questions. We grouped them into 7 main themes,
each described below. After each one, we list three questions
to illustrate the diversity of their interests.

Theoretical Concepts This theme groups questions where
the STACKOVERFLOW user would like to understand a con-
current programming concept. We found a total of 55 ques-
tions asked (6 of them are in the top-10 most popular ones*).
These questions fit into one of the two following templates:
(1) what is X? or (2) what is the difference between X and
Y? For instance:

Q34510~ “What is a race condition?”

Q588866* ~+ “What's the difference between the atomic
and nonatomic attributes?”

Q200469* ~» “What is the difference between a process
and a thread?”

Since this theme groups questions that ask for general
guidelines, we believe that the trade-off between techniques
should be better explained. We found 29 questions in this
theme where a STACKOVERFLOW user asked about when
to use one techniques instead of another (e.g., 7889746,
Q800383, (94201713). As a STACKOVERFLOW user men-
tioned “I got slightly confused about the differences between
Handlers, AsyncTasks and Threads in Android. ... Should
this be run in a handler or a thread, or even an asynctask?”
(Q6964011). API and language designers can dramatically
improve this scenario by providing general explanations on
whether or not to favor one concurrent programming con-
struct instead of another. Also, researchers can create rec-
ommendation systems that support developers in better ex-
ploring these trade-offs. We categorize the questions in this
theme into sub-themes in § 3.2.1.

Practical Concepts Unlike the “teorical concepts”, in this
theme, STACKOVERFLOW users already understand a cer-
tain concurrent programming construct or concept, but they
do not know in which situations they should use them (51
questions asked — 2 of them are in the top-10 most popular
ones). We then grouped questions that asked for (1) how to
use X and (2) when to use X. For instance:

4 The symbol * denotes that the question is part of the top-10 most popular
ones.

2015/8/16

Q817856* ~+ “When and how should I use a ThreadLocal
variable?”

Q154551~ “Which [synchronization] approach should be
used [to increment an int]?”

Q251391~ “Why is lock(this) {... } bad?”

Here we also found 16 questions comparing two differ-
ent concurrent programming constructs. Still, STACKOVER-
FLOW users are highly interested in best practices (e.g.,
Q251391) and practical uses (e.g., Q4818699). Interest-
ingly, we found 5 questions regarding Java’s volatile
keyword. We observed that, even though STACKOVER-
FLOW users know what is this concurrent construct for, they
are not sure when it can be an appropriate replacement for a
synchronized statement, which provides more guarantees,
or for a an AtomicReference (e.g., Q281132), which pro-
vides the same guarantees [0]. We categorize the questions
in this theme into sub-themes in § 3.2.2.

First Steps ' We observed that STACKOVERFLOW users are
looking for the simplest working multithreaded code (29
questions asked). In this theme we grouped questions that
asked for (1) how to create a thread?, (2) does language X
supports threads?, and also (3) questions about thread usage
such as (3.1) how to pass a parameter to a thread?, (3.2) how
to get the number of processors available?, or (3.3) how to
get a thread’s id? Some examples include:

Q2846653~ “Trying to find a simple example that clearly
shows a single task being divided for multi-threading.”
Q3360555~+ “How to pass parameters to ThreadStart
method in Thread?”

Q2734025~~ “Is javascript guaranteed to be single-threaded?”

We found several questions asking for the simplest multi-
threaded working code, either for C++ (Q266168), Android
(Q1921514), or even PHP (QQ70855). Since these questions
are relatively easy to answer, all of them were solved. An-
other common category of questions is related to managing
objects in different threads, for instance, how to pass a pa-
rameter to a thread (e.g., Q877096), or how to return a value
from a thread (e.g., Q1314155). Best practices are also en-
couraged here, as a STACKOVERFLOW user mentioned, “[1]
just want some advice on ‘best practice’ regarding multi-
threading tasks.” Q2528907.

Thread Life-Cycle Several STACKOVERFLOW users asked
about the thread life-cycle (18 questions asked — 1 of
them is in the top-10 most popular ones). In this theme,
we grouped the questions related to (1) how to join/wait-
/sleep/interrupt/terminate® a thread. For instance:
Q1520887~~ “How to pause / sleep thread or process in
Android?”

Q323972~~ “Is there any way to kill a Thread in Python?”

5 All questions related to thread creation are in the “First Steps” theme.
We opted for this approach because there is a number of issues related to
thread creations, for instance, how to pass different parameters to a thread
Q877096.

Q289434~~ “How to make a Java thread wait for another
thread’s output?”

Here questions ask about how to wait/join/pause/sleep-
/stop a thread. Interestingly, 8 (out of 18 questions) per-
tain to how to stop a thread. However, it is generally a bad
pattern to try to stop a thread. In Java, where the method
Thread.stop() is deprecated, the documentation is clear in
saying that it is an “inherently unsafe” way to stop a thread®,
because it can create objects with inconsistent states. A bet-
ter approach is to use the Thread.interrupt() method
instead. STACKOVERFLOW users are aware of that. All
answers have mentioned that the Thread.interrupt()
method is the proper way to solve this problem.

Technical problems This theme is related to technical
problems faced by developers when writing concurrent ap-
plications (53 questions asked — 1 of them is in the top-10
most popular ones). We grouped questions that asked for (1)
how to fix this problem? For instance:

Q661561* ~ “How to update the GUI from another thread
in C#2

Q530211~ “[How to] create a blocking Queue<T> in
.NET?”

Q16159203~~ “Why does this Java program terminate de-
spite that apparently it shouldn’t (and didn’t)?”

In this group of questions, communication between threads
is one of the most common topics. STACKOVERFLOW users
want to send messages from one thread to another, for in-
stance, to update the user interface (UI), which is running in
the main thread (e.g., Q4369537). This is particularly true
in mobile applications (e.g., Q4369537)

Concurrent libraries/frameworks In this theme we grouped
questions that ask for indications about concurrent program-
ming libraries or frameworks (15 questions asked). For in-
stance:
Q3629784~~ “How is Node.js inherently faster when it still
relies on Threads internally?”
Q6916385 ~~ “Is there a concurrent List in Java’s JDK?”
Q3847108~~ “What is the Haskell response to Node.js?”
From this theme, most of the questions (5 of them) are
about the Node.js framework (e.g., 3629784, 04631774,
@Q3011317). However, we did not find mention to concurrency-
related frameworks, such as Java’s ForkJoin framework [12]
or software transactional memory.

3.1.1 Correctness

Finally, in this theme we group questions related to the cor-
rectness of programs when employing concurrent program-
ming constructs (10 questions asked). For instance:
Q9666~~ “Is accessing a variable in C# an atomic opera-
tion?”

Q7095~~ “Is the C# constructor thread safe?”

Shttp://docs.oracle.com/javase/1.5.0/docs/guide/misc/
threadPrimitiveDeprecation.html

2015/8/16

http://docs.oracle.com/javase/1.5.0/docs/guide/misc/threadPrimitiveDeprecation.html
http://docs.oracle.com/javase/1.5.0/docs/guide/misc/threadPrimitiveDeprecation.html

Q680097 ~~ “I've heard i++ isn’t thread safe, is ++i
thread-safe?”

It is well-known that correctness is one of the biggest
problems associated with concurrent programming. STACK-
OVERFLOW users also discuss this topic in great detail.
However, such questions are not always straightforward
to answer. For instance, when a STACKOVERFLOW user
questioned “Is the != check thread safe?” ((Q18460580),
the STACKOVERFLOW user who wrote the accepted answer
needed to analyze the byte code generated by the != instruc-
tion. She observed that the variables under test needed to be
loaded twice, which makes it a non-atomic operation.

Let us now investigate different quantitative aspects of
each one of these themes. Table 2 shows the results. We use
boldface to highlight the highest value for each case.

From this table we can observe that the majority of ques-
tions (153 of them) are related to the basics of concurrent
programming. We consider a question as basic if it falls in
one of the following themes: Theoretical Concepts, Practi-
cal Concepts, First Steps or Thread Life-Cycle. We believe
that these questions are more popular because programmers
are still getting acquainted with concurrency. Also, since the
concurrent programming learning curve is not negligible,
such questions are supposed to be revisited (the V variable)
and favoritable (the I variable) more often. This is particu-
larly true for the Thread Life-Cycle theme (V is 65.56), since
it has a couple of different stages.

Second, the A/Q ratio is 8.5x greater than the mean ratio
on STACKOVERFLOW. When a question has much more an-
swers than the average, we believe it is because the question
is easier to answer. This is particularly true for the Theo-
retical Concepts (A/Q is 10.56, A is 6.14). For instance, an-
swers to questions in this theme can easily be found in well-
known concurrent programming textbooks (e.g., [0, [1]). In
our base group, no question has received less than 2 answers.

Third, the STACKOVERFLOW user who asks a question
can mark at most one answer per question as accepted. A
STACKOVERFLOW user earns additional points when her an-
swer is marked as accepted. When a question receives more
attention, for instance, in terms of answers and visualiza-
tions, the user who came up with the accepted answer can
receive additional points, because other STACKOVERFLOW
users can “upvote” that answer, meaning that this answer
was useful for other users too. We use this feature to de-
fine the success of a question, represented at the “Solved”
column. As we can see, the majority of questions from our
base group are successfully answered (89.45% of them —
39.99% on STACKOVERFLOW).

3.2 RQ2. Concurrency concepts that developers want
to know more about

We now provide a deeper discussion based on the Theoreti-
cal and Practical Concepts themes. Analyzing these themes,
we found 4 and 3 new sub-themes, respectively for Theoreti-

cal Concepts and Practical Concepts themes. We discuss the
two with the highest number of questions next.

3.2.1 Theoretical Concepts

Threading Threading is the most common sub-theme
with 25 concurrent programming-related questions. These
questions vary from the difference between “implements
Runnable and extend Threads” (Q541487), or “the differ-
ence between a process and a thread” (Q200469). Varia-
tions of these questions can be found in this sub-theme (e.g.,
Q4130194, Q1762418 and Q807506), and most of them
are related to well-established and studied concurrent pro-
gramming constructs. The only exception is a question that
asks about the std: :promise concurrent construct, intro-
duced in the C++11 standard library (Q11004273). How-
ever, even though the implementation is new, the concept
promise was invented decades ago [5].

Locks We found 16 questions regarding locks. They vary
from very basic questions, such as “what is a mutex?”
(Q34524), to more elaborated ones, such as the difference
between “Recursive Lock (Mutex) vs Non-Recursive Lock
(Mutex)” (Q187761). Most surprisingly is the recurring in-
terest on semaphores (10 questions about it). In a recent
study among more than 2,000 Java projects, the authors ob-
served that none of them employs the Semaphore class [21].

3.2.2 Practical Concepts

Threading Threading is also the most common sub-theme
with 23 questions. In this sub-theme, developers are inter-
ested in understanding “When to use a thread pool in C#?”
(Q145304), or if the time.sleep () construct puts a thread
or a process to sleep (Q92928).

Locks We found 17 questions regarding locking strategies.
One example of such question is “What is a good pattern
for using a Global Mutex in C#?” (Q229565). In this ques-
tion, in particular, the authors stressed the fact that the con-
cept is misunderstood, and ask for advice in the following
scenarios: (1) while guaranteeing that the mutex is properly
relased; (2) deals with cases where other processes aban-
don the mutex. We also observed that this topic has ques-
tions that we consider simple ones, for instance, “How to
use wait and notify in Java” (QQ886722), and questions that
we consider hard ones, such as “When should one use a spin-
lock instead of mutex?”((Q5869825). We consider the latter
question as hard to answer, because answering it requires in-
depth knowledge about locks implementations [2].

3.3 RQ3. Unanswered questions about concurrency

Analyzing all the 28 questions that do not have an accepted
answer, we observed that 22 of them can be described as
“weakly-accepted”, that is, a question has an answer that one
can judge as accepted, but the author of the question did not
mark it as so. One example is question (214010906, where

2015/8/16

Table 2. The distribution of questions and answers per theme. A/Q means the proportionality of answers per question.

| Themes | Questions | Answers | A/Q [S A C F V | P [Solved
Theoretical Concepts 55 581 10.56 | 87.78 6.14 1.39 31.03 47.46 | 16.16 | 83.63%
Practical Concepts 51 413 8.09 | 63.73 471 1.17 21.05 36.31 | 12.18 | 88.23%
First Steps 29 251 865 | 564 503 1.11 1848 60.96 | 12.88 | 79.31%
Thread Life-Cycle 18 167 9.27 | 5958 539 1.72 1737 65.56 | 14.44 | 94.44%
Technical problems 53 433 8.16 | 51.65 475 1.34 1926 39.22 | 11.99 | 90.56%
Correctness 10 91 9.1 4931 529 185 1199 1555 | 9.79 90%
Concurrency libs/frameworks 15 87 5.8 | 4463 337 294 1698 23.19 | 11.17 | 100%

the STACKOVERFLOW user discovered that a synchroniza-
tion point was introduced in the HashMap class, causing a
great impact on the performance on clients, as a STACK-
OVERFLOW user mentioned, “when I run on 64 threads, 1
get less performance than when I run on 1 thread”. The au-
thor of this modification acknowledged the bottleneck and
came up with a fix for the problem. The author of the ques-
tion did not accept the answer, though.

Analyzing the remaining 6 unanswered questions re-
vealed interesting research problems. First, question Q12159
asked for advice on testing multi-threaded code. The author
stressed the fact that this is a “key problem for programmers
today”. This particular question has 26 answers. However,
even the answer with the highest score is vague. For in-
stance, the user suggests programmers to “reduce the com-
plexity of threaded code as much as possible” or to “iden-
tify those places in your design where threads interact with
the same instance and reduce the number of those places”.
Such suggestions, albeit helpful to reduce code complexity,
they do not give any insight on how to test multi-threaded
code. Second, two STACKOVERFLOW users have mentioned
the “Humble Object” testing pattern. However, this pattern
does not prevent the occurrence of concurrency bugs. Third,
STACKOVERFLOW users suggested the use of static anal-
ysis, dynamic analysis and model checkers tools, such as
FindBugs and Java Pathfinder. We believe that such tools
can play an important role on identifying concurrency bugs.

Another interesting question is related to the design and
implementation of a lock-free circular buffer (Q871234).
Several users pointed out that this is still an open research
problem, and if the asker “have not spent at least six months
studying lock-free data structures, do not attempt to write
one yourself”. Another questions is regarding how to pro-
grammatically identify deadlocks in Java (Q217113). This
question is quite polemic, since some users have pointed
out that it is not possible, whereas some users pointed
out that yes, it is possible to detect deadlocks using the
ThreadMXBean class, introduced in JDK 1.5. However,
as pointed out by a respondent in the same question, the
ThreadMXBean class only work for synchronized blocks,
and not the new java.util.concurrent mechanisms.

4. Further Analysis

First, although GPUs are easily available in the market and
are heavily used by the gaming industry, we only found
one question regarding GPU programming (Q2392250).
We decided to further investigate this issue by including
the “CUDA”, “OpenCL”, “GPU” and “GPGPU” keywords
in our search string. However, no new question about it was
found. Still, we found two questions about the actors pro-
gramming model (1251666, (Q2708033), but newer con-
current constructs such as the ForkJoin framework, Java
parallel streams, or software transactional memory were
never mentioned. This fact is understandable, since it takes
time for a new feature to become popular.

Second, we observed that concurrent programming has
reached mobile developers. We found 15 questions regarding
thread management in Android (e.g., Q4369537), 6 ques-
tions on i0S (e.g., Q7055424) and 7 questions on Win-
dows Phone (e.g., Q4331262). Most of these questions are
related to the default concurrent programming constructs
available on the programming languages. However, we also
observed that STACKOVERFLOW users are employing the
specific threading constructs available only for these plat-
forms, such as the AsyncTask concurrent construct for the
Android platform (e.g., Q9654148), or the NSOperation
concurrent construct for the i0S platform (e.g., Q830218).

Third, we also observed another brick on the wall of the
programming language wars [22]. For instance, a STACK-
OVERFLOW user asked “Is there a language that makes
creation of parallel programs as easy as object-oriented
programming languages help creating complex architec-
tures?” (Q134867). Answers to this question came in differ-
ent flavors: Erlang (4 answers), Clojure (3 answers), and Go
(3 answers). Occam, F#, Java, Mozart Oz, Ciao and Scala
were supported by one STACKOVERFLOW user each. This
fact shows that the “One Language to Rule Them All” hy-
pothesis [22] does not hold also for concurrent programs.
Interestingly, however, most of the users have cited func-
tional languages. Likewise, it has been argued for many
years that functional programs are well-suited for paral-
lel evaluation [8]STACKOVERFLOW users observed these
benefits, for instance, when asked “How/why do functional

2015/8/16

languages (specifically Erlang) scale well?” (Q474497), a
STACKOVERFLOW user answered that “A functional lan-
guage doesn’t (in general) rely on mutating a variable. This
in turn avoids the majority of the hoop jumping that tradi-
tional languages have to go through to implement an algo-
rithm across processors or machines.”.

Fourth, STACKOVERFLOW users seem to like to learn
from mistakes. We observed some questions where a user
asked for a real world example, such as deadlocks (e.g.,
Q8880286) and livelocks (e.g., 1036364). We believe that
these questions are important because sometimes the con-
cept is easy to get, however, in practice, without seeing a
real example of the problem, the problem might be hidden
during a code review process.

Fifth, we did not find questions that ask for advices on
how to use concurrent programming constructs to improve
application performance, which is surprising, since perfor-
mance is one of the most important motivations for the use
of concurrency and parallelism [14]. Also, we believe that
this is an important topic that deserves more discussion,
because when misused, the same concurrent programming
techniques can introduce performance bugs [16].

Sixth, in our base group, none of questions were created
in 2014. We further analyzed this matter by running a query
that selects the top-10 most popular questions in 2014. We
observed that all these questions have answers, although four
of them do not have an accepted answer. As regarding the
popularity, we found that the most popular question in 2014
(Q21163108) has P equals to 82.35 (11.5 times lesser than
the highest popularity of our base group).

Finally, we observed that Java and C# are the program-
ming languages which have more questions about (77 and
60, respectively), which is not surprising, since these two
languages have well-known and well-studied concurrent
programming constructs. Conversely, we also observed that
non-traditional languages for concurrent programming, such
as Python (17 questions), are of great interest to the STACK-
OVERFLOW community. Even though recent releases of the
language have introduced advanced high-level concurrent
programming constructs, such as concurrent.futures
(relased in v3.2) and asyncio (release in v3.4), all of the
questions pertain to the basic threading constructs (e.g.,
Q31340, 292928, Q3033952). Ultimately, one might argue
that we should organize our themes based on programming
languages. However, most of the questions on the Theoreti-
cal Concepts cannot be related to a programming language,
for instance, “Concurrency vs Parallelism - What is the dif-
ference?” (Q1050222).

S. Implications

First, we observed that several questions are related to
the basics of concurrent programming concepts and usage.
Thus, both researchers and educators can get these results to
improve the knowledge in this field. Researchers can come

up with new empirical studies on the ease to use of such
concurrent programming constructs, whereas educators can
provide additional homework, exams, and class activities,
focusing on real word problems provided in this study. Tools
to help developers to write concurrent software from the very
beginning is also needed. Such tools can be in the forms of
e-learning environments, but also on tools to support con-
current programming practice. Furthermore, we observed
the need of a better API documentation that also provides
the simplest working code example. This is important for at
least two reasons: (1) several STACKOVERFLOW users have
mentioned that they found the documentation is misleading
(e.g., Q6964011); and (2) software developers often ask for
the simplest working code (e.g., Q266168). API designers
can improve the documentation of their libraries, explaining
the most important differences between their libraries and
other ones that are in widespread use.

6. Related Work

Empirical studies on concurrent programming. Pinto et
al. [21] conducted a research over 2,000 projects, focusing
on the Java concurrent constructs. Okur and colleagues [16]
studied how Windows Phone applications (WP) are using
asynchronous programming. In this study, they analyzed
over 1,300 WP apps, and observed that developers are (i)
missing opportunities too use this framework and (ii) they
are misusing the constructs, creating problems that might
hurt performance and introduce deadlocks. This set of stud-
ies are complementary to our research. Although the afore-
mentioned works provide a perspective about how a given
concurrent programming construct is being used in prac-
tice, we are more focused on the programmer side, describ-
ing what are the difficulties they face when writing concur-
rent software. To the best of our knowledge, only one study
has dealt with the topic understanding the problems faced
by application programmers when writing concurrent soft-
ware [13]. In this paper, however, the authors are more fo-
cused on concurrency bugs. For instance, the authors found
that 30% of all concurrent bug are related to deadlocks. In
contrast, in our study, in which we open to any kind of con-
currency related question, we found that less than 5% of the
our questions are related to deadlocks.

Empirical studies on STACKOVERFLOW. In the last few
years, question and answer websites have been thoroughly
studied [, 15, 18, 19]. Barua et al. [1] proposed a semi-
automatic approach to discover the main topics present in
STACKOVERFLOW discussions. Morrison et al. [15] who
studied how age is related to programming skills, and results
show that programming knowledge increases until the age
of 50. Previous effort has also been placed on understand-
ing how developers are dealing with energy consumption is-
sues [19], and what are the barriers to the adoption of refac-
toring tools [18]. However, to the best of our knowledge,
there is no study in the literature focused on understanding

2015/8/16

what makes concurrent programming hard for software de-
velopers using a social platform as the data provider.

7. Threats to Validity

Internal factors. First, our results are limited by our
dataset. We mitigate the bias of choosing a non-representative
set of questions by filtering out the most popular ones. Sec-
ond, we minimize the false-positive rate by investigating all
questions and answers manually. Still, in order to reduce the
false-negatives, we used the same keywords used by Lu et
al. [13]. Third, our qualitative approach is heavily based on
human factors. However, we tried our best to reduce the sub-
jectivity by using a well-known qualitative approach. While
we achieved saturation (i.e., no more themes could be ab-
sorbed), it is likely that we did not reach all possible themes
on STACKOVERFLOW. In order to further reduce this threat,
we also share our raw data (extracted questions and answers)
and invite more participants to reproduce our results.

External factors. These threats include the representa-
tiveness of our subjects. We mitigate this threat by mining
STACKOVERFLOW, which is the most widely used forum in
the software development world. However, our results only
apply to application programmers interested in concurrent
programming on STACKOVERFLOW. It does not cover ap-
plication programmers that use other Q& A websites. Finally,
we are only considering English questions and answers. Al-
though it is possible to collect data from other Q&A web-
sites, we do not expect major divergences with our results
by considering English content only.

8. Conclusions

We performed an empirical analysis of concurrency-related
discussions on STACKOVERFLOW, a popular Q&A website.
Our study involves analyzing the text of both questions and
answers related to concurrent programming development to
extract the dominant topics of discussion using a qualitative
methodology. Our study provides important insights into
better understanding what are the difficulties that application
developers have when writing concurrent programs.

References

[1] A. Barua, S. Thomas, and A. Hassan. What are developers
talking about? an analysis of topics and trends in stack over-
flow. EMSE, 2012.

[2] T. David, R. Guerraoui, and V. Trigonakis. Everything you
always wanted to know about synchronization but were afraid
to ask. In SOSP, 2013.

[3] J. Fereday and E. Muir-Cochrane. Demonstrating rigor using
thematic analysis: A hybrid approach of inductive and deduc-
tive coding and theme development. International Journal of
Qualitative, 5, 2006.

[4] P. Fleming and J. Wallace. How not to lie with statistics: The
correct way to summarize benchmark results. Commun. ACM,
29(3):218-221, Mar. 1986. ISSN 0001-0782.

[5] D. Friedman and D. Wise. The Impact of Applicative Pro-
gramming on Multiprocessing. Technical report. Indiana Uni-
versity, Computer Science Department, 1976. URL http:
//books.google.com.br/books?id=ZIhtHQAACAAJ.

[6] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and
D. Lea. Java Concurrency in Practice. Addison-Wesley,
2006.

[7] D. Huo, T. Ding, C. McMillan, and M. Gethers. An empirical
study of the effects of expert knowledge on bug reports. In
ICSME, 2014.

[8] S. P. Jones. Parallel implementations of functional program-
ming languages. The Computer Journal, 32(2):175-186,
1989.

[9] A. Kulkarni, Y. Liu, and S. Smith. Task types for pervasive
atomicity. In OOPSLA, 2010.

[10] T. LaToza and B. Myers. Hard-to-answer questions about
code. In PLATEAU, pages 8:1-8:6, 2010.
[11] D. Lea. Concurrent Programming in Java. Design Principles

and Patterns. Addison-Wesley Longman Publishing., 2nd
edition, 1999.

[12] D. Lea. A java fork/join framework. In Java Grande, 2000.

[13] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes:
A comprehensive study on real world concurrency bug char-
acteristics. In ASPLOS, 2008.

[14] P. McKenney. Is Parallel Programming Hard, And, If So,
What Can You Do About It? kernel.org, Corvallis, OR, USA,
Ist edition, 2014. URL http://kernel.org/pub/linux/
kernel/people/paulmck/perfbook/perfbook.html.

[15] P. Morrison and E. Murphy-Hill. Is programming knowledge
related to age? an exploration of stack overflow. In MSR, 2013.

[16] S. Okur, D. Hartveld, D. Dig, and A. Deursen. A study and
toolkit for asynchronous programming in c#. In /ICSE, 2014.

[17] V. Pankratius, F. Schmidt, and G. Garreton. Combining func-
tional and imperative programming for multicore software:
An empirical study evaluating scala and java. In ICSE, 2012.

[18] G. Pinto and F. Kamei. What programmers say about refac-
toring tools? an empirical investigation of stack overflow. In
WRT, 2013.

[19] G. Pinto, F. Castor, and Y. Liu. Mining questions about
software energy consumption. In MSR, 2014.

[20] G. Pinto, F. Castor, and Y. Liu. Understanding energy behav-
iors of thread management constructs. In OOPSLA, 2014.

[21] G. Pinto, W. Torres, B. Fernandes, F. Castor, and R. S. Barros.
A large-scale study on the usage of javas concurrent program-
ming constructs. Journal of Systems and Software, 106(0):59
—81,2015. ISSN 0164-1212.

[22] A. Stefik and S. Hanenberg. The programming language wars:
Questions and responsibilities for the programming language
community. In Onward!, pages 283-299, 2014.

[23] H. Sutter and J. Larus. Software and the concurrency revolu-
tion. Queue, 3(7):54-62, Sept. 2005. ISSN 1542-7730.

[24] J. von Neumann. First draft of a report on the edvac. IEEE
Ann. Hist. Comput., 15(4):27-75, Oct. 1993. ISSN 1058-
6180.

2015/8/16

http://books.google.com.br/books?id=ZIhtHQAACAAJ
http://books.google.com.br/books?id=ZIhtHQAACAAJ
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

	Introduction
	Methodology
	Research Results
	RQ1. The most popular problems
	Correctness

	RQ2. Concurrency concepts that developers want to know more about
	Theoretical Concepts
	Practical Concepts

	RQ3. Unanswered questions about concurrency

	Further Analysis
	Implications
	Related Work
	Threats to Validity
	Conclusions

