
How Does Contributors’ Involvement Influence the
Build Status of an Open-Source Software Project?

Marcel Rebouças, Renato O. Santos
Federal University of Pernambuco

Recife, Brazil
{mscr, ros3}@cin.ufpe.br

Gustavo Pinto
Federal Institute of Pará

Belém, Brazil
gustavo.pinto@ifpa.edu.br

Fernando Castor
Federal University of Pernambuco

Recife, Brazil
castor@cin.ufpe.br

Abstract—The recent introduction of the pull-based devel-
opment model promoted agile development practices such as
Code Reviews and Continuous Integration (CI). CI, in par-
ticular, is currently a standard development practice in open-
source software (OSS) projects. Although it is well-known that
OSS contributors have different involvements (e.g., while some
developers drive the project, there is a long tail of peripheral
developers), little is known about how the contributor’s degree
of participation can influence the build status of an OSS project.
Through TravisTorrent’s dataset, we compare the success rates
of builds made by casual and non-casual contributors and what
factors on their contributions may influence the build result. Our
results suggest that there is no representative difference between
their build success (they are similar in 85% of the analyzed
projects), meaning that being a casual contributor is not a strong
indicator for creating failing builds. Also, factors like the size
of their contributions and the number of project configurations
(jobs) have the potential of impacting the build success.

I. INTRODUCTION

The introduction of pull-based development practices, along
with tools such as version control systems and integrated
issue trackers, created environments that facilitates the pro-
cess of creating, maintaining, and contributing to open-source
software [4]. It also allowed the usage of practices such as
Continuous Integration, which is seen as a key practice to
deliver high quality working software [5].

Moreover, it is well-known that open-source software devel-
opment is driven by a diverse community of developers, with a
variety of skills and interests [11]. It is also part of the process
of open-source software to recruit, onboard, and retain new
contributors [9]. Thus, CI systems are particularly relevant to
make sure that contributions from a not-well-known developer
are properly tested and integrated in a timely manner.

In a recent study, Pinto et al. [7] observed several developers
do not want to have a key role on the project, but want
to contribute nevertheless. These not-that-involved developers
were called “casual contributors”. More interestingly, however,
is the fact they are popular: 48.98% of the contributors of
the most popular open-source projects hosted on Github were,
in fact, casual contributors. Still, different than what was
thought [6], casual contributions are far from trivial: 30.20%
fixed bugs, 18.75% added features, and 8.85% refactored code.
It is also important to note that being a casual is not the same
as being inexperieced or a novice.

However, regardless the interest that one might have in a
project, it is not always straightforward to make the very first
contribution [9]. Project newcomers may face challenges in
(1) finding a suitable task to start, (2) coding issues, or (3)
dealing with documentation problems [7, 9]. As a result, they
might ended up placing contributions that do not fully adhere
with the project’s guidelines or, at the worst scenario, break
the build.

One might believe that casuals are more prone to break
the build, since they might have little or no prior knowledge
on the project domain. However, since the build status is
often taken into account when maintainers are reviewing new
contributions [12], they might put more effort to create their
first pull-requests. To shed light on these questions, we analyze
if the contributor’s involvement can influence the build status
in an open-source project that uses CI. More concretely, we
raise the following research question:

RQ. Are casual contributors more prone to create a failing
build?

To answer this research question, we used TravisTorrent1, an
easy-to-use backup of Travis CI, which is by far the most used
continuous integration tool [5].Our key finding is: the rate of
build success of casual contributors is similar to those of non-
casuals in 85% of the analyzed projects, meaning that being a
casual contributor is not a strong indicator for creating failing
builds. However, there seems to be factors, like the number of
jobs, that increases their chance of build failure.

II. METHODOLOGY

Data collection. We used the data released by TravisTor-
rent on 06-Dec-2016 as our main data source. TravisTorrent
provides Travis CI build analyses, annotated with GitHub2

meta-data, and tests-related data [1], such as the duration of
a build, the number of jobs, the number of commits and the
amount of tests ran in the said build. TravisTorrent, however,
does not include committer-related data (i.e., name and email),
which are necessary to detect the contributor’s involvement
with the project. For this reason, we used the official Travis
API to enrich the original dataset with the committers’ name

1https://travistorrent.testroots.org
2https://github.com

https://travistorrent.testroots.org
https://github.com

and email address3. Since one potential contributor can use
several different email addresses, we used a disambiguation
technique [2] to mitigate the threat of counting the same
contributor twice for the same project. We substituted 7,285
occurrences of duplicated users and ended up with 35,360
users across all projects, considering users as unique per
project (a contributor can be a casual contributor in one project
and a core participant of another one).
Data cleaning. Before handling the data, we removed projects
that:

• Do not have a long history of Travis usage. We removed
189 projects that did not have at least 5 casual and 5
non-casual builds.

• Do not use Travis effectively. We removed 19 projects
that did not have a single successful build made by
casuals and non-casuals.

• The disambiguation technique was not accurate. For
instance, cloudfoundry/cloud_controller_ng
project joined the name of each contributor of a contri-
bution, making it not suitable for disambiguation (e.g.,
Name: Mark and Anna, Email: mark+anna@host.com).

We ended up with a curated list of 1074 projects (755 using
Ruby, 315 using Java and 4 using JavaScript).
Data preprocessing. At Travis, a single push or pull-request
can trigger a build with multiple jobs. A job corresponds to a
configuration of the building step (i.e., the SDK version or the
DBMS). While there are projects that just use one job per build
(i.e. 249 projects had a mean of 1 job per build), we found that
there are 39 projects that use, on average, more than 20 build
configurations, which triggers more than 20 jobs per push or
pull-request4. Since jobs share the same build-id, we joined
them to correctly consider the number of builds triggered per
contributor in a project, totaling 619,370 builds.

We classify the contributors’ involvement based on the
number of builds triggered. We grouped contributors in two
sets: casual contributors and non-casuals. While Pinto et al. [7]
considered a casual as a contributor that just made at most one
contribution, it would not be fair to apply the same reasoning
in our dataset. For instance, when using Travis, builds are
triggered when a pull-request is sent for approval. If changes
are suggested, the contributor should incorporate the changes
in a new commit (triggering a new build at Travis). Thus, a
single pull-request might trigger multiple builds. We chose 4 as
the threshold. Close values (e.g. 3 or 5), however, affects less
than 2% of the commits. Table I presents descriptive statistics
about the distribution of contributors.
Data interpretation. We used Fisher’s Exact Test [3] to com-
pare the proportions of successful and failing builds between
casuals and non-casuals. This nonparametric test is useful
for comparing the proportions of two nominal variables. We
also further analyze the projects that contained a significant
statistical difference in the chance of build success with

3http://gustavopinto.org/casual-contributors-msr-challenge/
4https://travis-ci.org/slim-template/slim/builds/179405105

TABLE I
DESCRIPTIVE STATISTICS OF CONTRIBUTORS PER LIMIT # OF BUILDS, THE

NUMBER OF CONTRIBUTORS, THE TOTAL OF BUILDS MADE BY THOSE
CONTRIBUTORS, AND % OF SUCCESSFUL BUILDS.

Limit Contributors Sum of Builds Success
% # % %
1 18,739 56.4% 18,739 3.0% 76.5%
2 23,958 72.1% 29,176 4.7% 75.5%
3 26,035 78.3% 35,407 5.7% 75.2%
4 27,136 81.6% 39,811 6.4% 75.2%
10 29,192 87.8% 53,692 8.6% 74.8%

TABLE II
AVERAGE NUMBER OF CONTRIBUTORS PER PROJECT, WITH 1ST

QUARTILE, 3RD QUARTILE AND MAXIMUM NUMBER OF OCCURRENCES.

1st Median Mean 3rd Max
Casuals 8 14 24.24 28 749
Non-Casuals 2 4 6.69 8 132

multiple statistical tests over other factors such as size of
contributions and number of jobs. From these projects, we
tried to identify the causes that led to the higher or lower
chance of success of casuals’ builds, when compared to the
ones of frequent contributors. When appropriated, we used the
non-parametric Mann-Whitney-Wilcoxon (MWW) test [13].

III. RESULTS

The number of casual and non-casual contributors greatly
varies in the projects of our dataset, as shown in Table II.
Some projects contained more than 300 casual contributors
(i.e., ruby/ruby has 749, mitchellh/vagrant has 444,
and leereilly/swot has 354), while maintaining a much
smaller number of frequent developers: 132, 35, and 13
respectively. Also, before the filtering process, we found that
only 22 (4.15%) projects had builds made by one contributor
— the owner of the project — and 31 (5.92%) did not
have any casual contributors. Moreover, 23.5% of the casual
contributors that just made one build (as shown in Table I)
had a failing state. This suggests that these contributions were
never fixed, or might have been accepted without considering
their statuses.

A. RQ. Are casual contributors more prone to create a failing
build?

For each project, we compared the number of successful and
failing builds of casual contributors to those of non-casuals,
using the Fisher’s Exact Test [3]. This served to identify if
the rate of success of casual builds in a certain project was
statistically higher than non-casuals, if the contrary applies, or
if no significant difference exists with 95% confidence.

Applying the test, we found that 913 (85%) projects had
no significant difference, 107 (9.97%) had more non-casual
success, and 54 (5.02%) had more casual success. From now
on, we refer to these sets of projects as draw-projects, non-
casual-wins-projects and casual-wins-projects.

The result goes against our initial thought that the barriers
faced by casuals would direct reflect at builds statuses, which
is not true for the majority of projects. We believe, however,

http://gustavopinto.org/casual-contributors-msr-challenge/
https://travis-ci.org/slim-template/slim/builds/179405105

that many factors, such as the size of the contribution and the
number of jobs and tests, might explain the causes of such
result.

1) Size of contributions: The average size of contributions
made by casual contributors are smaller than those made by
non-casual contributors (Wilcoxon, two-sided, p-value = 2.2e-
16), both in source code churn (the median was 36.045 for
casual ones and 85.77 for non-casuals) and in the quantity of
modified files (the median was 2.56 files for casual ones and
4.48 files for non-casuals). This difference indicates that, on
average, casual contributions involve a smaller set of changes,
which can help to reduce the chance of breaking a build.

In the projects mitchellh/vagrant and
leereilly/swot, mentioned at the beginning of
this section, the median of source code lines changed
by casual contributions was rather small. For instance,
mitchellh/vagrant had a median of 4 modified source lines
per casual contribution, while in leereilly/swot the median
of modified source code lines was 0, which suggests a
high number of non-code contributions (e.g., documentation
updates). When taking a closer look, the majority of casual
contributions were made by adding .txt files. Both projects
were in the set casual-wins-projects.

We also compared whether the size of average casual con-
tribution size varied on non-casual-wins-projects and casual-
wins-projects. However, there is not a relevant difference
neither in churn (Wilcoxon, two-sided, p-value = 0.7513) nor
in modified files (Wilcoxon, two-sided, p-value = 0.7581).

2) Number of jobs: The number of jobs in a build repre-
sents the different combinations of environment choices at the
building process. We found that the average number of jobs in
non-casual-wins-projects is higher than those in casual-wins-
projects (Wilcoxon, two-sided, p-value = 0.00133) and the
projects where casuals do not lose — draw-projects + casual-
wins-projects — (Wilcoxon, two-sided, p-value = 0.002536).
The median of jobs per build for non-casual-wins-projects was
4.68, while being 2.275 and 3.08 for casual-wins-projects and
draw-projects.

3) Number of tests: When analyzing the number of jobs in
the projects, we noticed that the projects of non-casual-wins-
projects also had a higher average number of tests ran than
those in casual-wins-projects (Wilcoxon, one-sided, p-value
= 0.0417) and draw-projects (Wilcoxon, one-sided, p-value =
0.0298). This seems fair, since more tests are needed to cover a
broader set of environments. For instance, the median number
of tests in projects of non-casual-wins-projects was 68, while
being 29 for the casual-wins-projects.

We expected that, in projects with more tests, casuals would
end up failing more since the test suite would be more
rigorous. Yet, this higher rigor applies to every contributor,
and casuals do not have a higher proportion of failure due to
tests when compared to non-casuals (Wilcoxon test, two-sided,
p-value = 0.8858) in non-casual-wins-projects. Interestingly,

5The median value is decimal because we calculated the average size per
project before calculating the median across projects. We did the same for
the other factors.

builds made by non-casuals at projects where casuals do not
lose — draw-projects + casual-wins-projects — have a higher
chance of failing due to tests (Wilcoxon test, two-sided, p-
value = 1.877e-11). This fact seems to go along with the fact
that non-casuals normally make more complex contributions.

IV. DISCUSSION

In this section, we provide additional discussions to the
results found.
Size of contributions. It was expected that the size of casual
contributions, in terms of lines of code, would be lower
than those of non-casuals, since they start contributing with
changes that offer a lower entry barrier [9, 7]. However, since
contributions can be made to files that are not directly tied to
the source code, such as documentation and adding assets, it
may be possible that the contributions never even presented a
risk of failing a build. Thus, the nature of how contributions
are made to a specific project, which may provide a low entry
barrier, can lead to a high success rate of casual contributions.
Number of jobs. The median of jobs per build for projects in
non-casual-wins-projects was significantly higher than casual-
wins-projects and draw-projects. It seems that if a project
contains a broader set of configurations, it might be more
challenge to contribute to it. Also, the contributor might place
an additional care in investigating the different environment
characteristics. Such specificities of how the project works
under different combinations might then require a deeper
understanding of it, resulting in casual contributions failing
more. Documentation regarding the peculiarities of the project
under the desired configurations would probably help casual
contributors to be more aware and fail in less builds.
Number of tests. A higher number of tests in the set of
projects that also contains more jobs supports the fact con-
tributing to those projects must be more rigorous. However,
although the amount of builds that fail because of tests is
higher, it happens to both casuals and non-casuals at non-
casual-wins-projects. It is interesting to see that, for the rest
of the projects, non-casuals had more failing builds due to
failing tests. We believe this might happen due to (1) the
higher complexity of the contributions, (2) the complexity of
the logic being added, or even (3) with the usage of techniques
such as test-driven development (TDD). We leave this better
understanding for future work.
Implications. Project maintainers can improve documentation
regarding the project specifics in different environments so that
casual and non-casual contributors can better understand how
to properly test the contribution. Still, researchers can use our
findings to understand the dynamics of casual contributions,
since this phenomenon is not full understood yet. For instance,
differently than what was found in recent studies [7], several
casual-contributions were not code-related. Finally, since new-
comers in general, and students in particular, might be afraid
to contribute to open-source projects [9], CS professors can
use our findings to motivate students to contribute to open-
source software. In particular, software testing disciplines can

place emphasis on writing tests for different environments.

V. RELATED WORK

Vasilescu et al. [10] found that 92% of their selected
projects are configured to use Travis-CI, although 45% of them
have no associated builds recorded in the Travis database.
Hilton et al. [5] conducted a survey and studied reposito-
ries to understand how software developers use CI. Pinto et
al. [8] investigated how developers perceive the benefits and
limitations of CI techniques. Among the findings, the authors
observed that although CI increases the confidence that the
system is in a known state, they also found that CI users
reported a false sense of confidence, when blindly trusting in
tests. Vasilescu et al. [12] found that CI helped to increase the
number of accepted pull-requests from core developers, and
to reduce the quantity of rejected from non-core developers,
without affecting code quality. To the best of our knowledge,
this work is the first aimed at understanding the relationship
how casual contributions influence the build status.

VI. THREATS TO VALIDITY

Builds can be triggered by pull-requests that involves mul-
tiple committers. However, we are only considering the author
of the build as the sole contributor, since the chance of these
occurrences is small. For instance, we randomly selected 3000
pull-requests, and less than 15% of those contains multiple
commits made by different contributors.

The act of accepting a pull-request triggers a build at Travis,
in which the author is the maintainer who accepted it, and not
the committer of the pull-request. This might create a bias
that increases the average chance of build success towards
frequent contributors, since accepting a successful pull-request
always creates a successful build. Since the Travis data do not
create a connection between the build of the pull-request and
the acceptance, we were not able to remove the acceptance
builds. Also, data from Travis do not comprehend the complete
phase of evolution of a project. For instance, it is possible
that Travis was just used for a small period of time and then
replaced by another CI mechanism. Because of this fact, we
may capture the whole scope of contributions in the evolution
of a project. Also, since some projects may be inactive or not
using Travis’ result, we decided to remove projects without a
single successful build.

As regarding the definition of a casual contributor, there is
not a “correct” limit number of builds that defines it. To choose
an appropriate value, we analyzed the distribution ranging
from 1 to 10. Finally, since we just analyzed a subset of
possible factors, we may not be capturing the full scope of
possible reasons that are affecting the build status. We leave
this for future work.

VII. CONCLUSION AND FUTURE WORK

Continuous Integration aims at increasing the understanding
of software changes. However, contributors still face chal-
lenges when trying to contribute for the very first times. In
this paper we studied whether the contributor involvement

(i.e., being a casual contributor) influences the status of a
build. Our results suggests that, in 85% of the cases, there
is no representative difference between contributions placed
from casual and non-casual contributors, meaning that being
a casual is not strong indicator for creating failing builds.
For future work, we plan to analyze how the contributions
between casuals and non-casuals differ, for instance, if the
domain of the project can lead to the attraction of more
casuals or if certain configurations of environments can be
more problematic to a project’s build success.
Acknowledgements. We would like to thank Paulo Borba and
the anonymous reviewers for helping to improve this paper.
This research was partially funded by CNPq (304755/2014-
1 and 406308/2016-0), FACEPE (APQ-0839-1.03/14), and
FACEPE PRONEX (APQ 0388-1.03/14).

REFERENCES

[1] M. Beller, G. Gousios, and A. Zaidman. Travistorrent:
Synthesizing travis ci and github for full-stack research
on continuous integration. In MSR, 2017.

[2] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and
A. Swaminathan. Mining email social networks. In MSR,
pages 137–143, 2006.

[3] A. Fisher. Statistical methods for research workers.
Cosmo study guides. Cosmo Publications, 1925.

[4] G. Gousios, M. Pinzger, and A. v. Deursen. An ex-
ploratory study of the pull-based software development
model. In ICSE, pages 345–355, 2014.

[5] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig.
Usage, costs, and benefits of continuous integration in
open-source projects. In ASE, pages 426–437, 2016.

[6] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and
K. Schneider. Creating a shared understanding of testing
culture on a social coding site. In ICSE, 2013.

[7] G. Pinto, I. Steinmacher, and M. A. Gerosa. More
common than you think: An in-depth study of casual
contributors. In SANER, 2016.

[8] G. Pinto, M. Rebouças, and F. Castor. Inadequate
testing, time pressure, and (over) confidence: A tale of
continuous integration users. In CHASE, 2017.

[9] I. Steinmacher, I. S. Wiese, A. P. Chaves, and M. A.
Gerosa. Why do newcomers abandon open source
software projects? In CHASE, pages 25–32, 2013.

[10] B. Vasilescu, S. van Schuylenburg, J. Wulms, A. Sere-
brenik, and M. G. J. van den Brand. Continuous
integration in a social-coding world: Empirical evidence
from github. In ICSM, pages 401–405, 2014.

[11] B. Vasilescu, D. Posnett, B. Ray, M. G. van den Brand,
A. Serebrenik, P. Devanbu, and V. Filkov. Gender and
tenure diversity in github teams. In CHI, 2015.

[12] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov.
Quality and productivity outcomes relating to continuous
integration in github. In ESEC/FSE 2015, 2015.

[13] D. Wilks. Statistical Methods in the Atmospheric Sci-
ences. Academic Press, 2011. ISBN 9780123850225.

