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Abstract

In both academia and industry, there is a strong belief that multicore technology will radically change the way software is built.
However, little is known about the current state of use of concurrent programming constructs. In this work we present an empirical
work aimed at studying the usage of concurrent programming constructs of 2227 real world, stable and mature Java projects from
SourceForge. We have studied the usage of concurrent techniques in the most recent versions of these applications and also how
usage has evolved along time. The main findings of our study are: (I) More than 75% of the latest versions of the projects either
explicitly create threads or employ some concurrency control mechanism; (II) More than half of these projects exhibit at least 47
synchronized methods and 3 implementations of the Runnable interface per 100KLoC, which means that not only concurrent
programming constructs are used often but they are also employed intensively; (III) The adoption of the java.util.concurrent
library is only moderate (approximately 23% of the concurrent projects employ it); (IV) efficient and thread-safe data structures,
such as ConcurrentHashMap, are not yet widely used, despite the fact that they present numerous advantages.
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1. Introduction

Multicore systems offer the potential for cheap, scalable, high-performance computing and also for significant
reductions in power consumption. To achieve this potential, it is essential to take advantage of new heterogeneous
architectures comprising collections of multiple processing elements. To leverage multicore technology, applications
must be concurrent, which poses a challenge, since it is well-known that concurrent programming is hard [1]. A
number of programming languages provide constructs for concurrent programming. These solutions vary greatly in
terms of abstraction, error-proneness, and performance. The Java programming language is particularly rich when
it comes to concurrent programming constructs. For example, it includes the concept of monitor, a low-level mech-
anism supporting both mutual exclusion and condition-based synchronization, as well as a high-level library [2],
java.util.concurrent, also known as j.u.c., introduced in version 1.5 of the language.

In both academia and industry, there is a strong belief that multicore technology will radically change the way
software is built. However, to the best of our knowledge, there is a lack of reliable information about the current state
of the practice of the development of concurrent software in terms of the constructs that developers employ. In this
work, we aim to partially fill this gap.

Specifically, we present an empirical study aimed at establishing the current state of the practical usage of concur-
rent programming constructs in Java applications. We have analyzed 2,227 stable and mature Java projects comprising
more than 600 million lines of code (LoC – without blank lines and comments) from SourceForge, one of the most
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popular open source code repositories. Our analysis encompasses several versions of these applications and is based
on more than 50 source code metrics that we have automatically collected. We have also studied correlations among
some of these metrics in an attempt to find trends in the use of concurrent programming constructs. We have chosen
Java because it is a widely used object-oriented programming language. Moreover, as we said before, it includes
support for multithreading with both low-level and high-level mechanisms. Additionally, it is the language with the
highest number of projects in SourceForge.

Evidence on how concurrent programs are written can raise developer awareness about available mechanisms. It
can also indicate how well-accepted some of these mechanisms are in practice. Moreover, it can inform researchers
designing new mechanisms about the kinds of constructs that developers may be more willing to use. Tool vendors
can also benefit by supporting developers in the use of lesser-known, more efficient mechanisms, for example, by
implementing novel refactorings [3, 4, 5]. Furthermore, results such as those uncovered by this study can support
lecturers in more convincingly arguing students into the importance of concurrent programming, not only for the
future of software development, but also for the present.

Mining data from the SourceForge repository poses several challenges. Some of them are inherent to the process
of obtaining reliable data. These derive mainly from two factors: scale and lack of a standard organization for source
code repositories. Others pertain to transforming the data into useful information. Grechanik et al. [6] discussed a
few challenges that make it difficult to obtain evidence from source code. For example, getting the source code of all
software versions is difficult because there is no naming pattern to define if a compressed file contains source code,
binary code or something else. Furthermore, it is difficult to be sure that an error has not occurred during measurement,
due to the number of projects and project versions. We address these challenges by creating an infrastructure for
obtaining and processing large code bases, specifically targeting SourceForge. In addition, we have conducted a
survey with the committers of some of these projects as an attempt to verify whether their beliefs are supported by our
data.

Based on the data we have obtained, we propose to answer a number of research questions (RQ):
RQ1: Do Java applications use concurrent programming constructs? We found out that more than 75% of

the most recent versions of the examined projects include some form of concurrent programming, e.g., at least one
occurrence of the synchronized keyword. In medium projects (20,001 - 100,000 LoC) this percentage grows to more
than 90% and reaches 100% for large projects (over 100,000 LoC). In addition, the mean numbers (per 100,000 LoC)
of synchronized methods, classes extending Thread, and classes implementing Runnable are, respectively, 66.75,
13, and 13.85. These results indicate that projects often use concurrent programming constructs and a considerable
number do so intensively1. On the other hand, perhaps counterintuitively, the overall percentage of concurrent projects
has not seen significant change throughout the years, despite the pervasiveness of multicore machines.

RQ2: Have developers moved to library-based concurrency? Our data shows that only 23.21% of the analyzed
concurrent projects employ classes of the java.util.concurrent library. On the other hand, there has been a
growth in the adoption of this library. However, this growth does not in general seem to be related to a decrease
in the use of Java’s traditional concurrent programming constructs, with a few exceptions. Furthermore, projects
that have been in active development more recently, i.e., had at least one version released since 2009, employ the
java.util.concurrent library more intensively than the mean. Therefore, the percentage of active, mature projects
that use that library is actually higher than 23.21%.

RQ3: How do developers protect shared variables from concurrent threads? Most of the projects use
synchronized blocks and methods. The volatile modifier, explicit locks (including variations such as read-write
locks), and atomic variables are less common, albeit some of them seem to be growing in popularity. We also noticed
a tendency of growth in the use of synchronized blocks. In particular, the growth in their use correlates positively
with the growth in the use of atomic data types, explicit locks, and the volatile modifier.

RQ4: Do developers still use the java.lang.Thread class to create and manage threads? We found out that
implementing the Runnable interface is the most common approach to define new threads. Moreover, a considerable
number of projects employ Executors to manage thread execution (11.14% of the concurrent projects). It was

1Throughout the paper, we often employ the terms “frequent” and “intensive”. We use the first one to refer to the number of projects that
employ a given construct. We use the term “often” as a synonym to “frequently”. We employ the term “intensive” to refer to the number of uses of
a given construct within a single project. For example, synchronized methods are used both frequently and intensively because a large number
of projects use this construct and most of them use it many times.
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possible to observe that projects that employ executors exhibit a weak tendency to reduce the number of classes that
explicitly extend the Thread class.

RQ5: Are developers using thread-safe data structures? We observed that developers are still using mostly
Hashtable and HashMap, even though the former is thread-safe but inefficient and the latter is not thread-safe.
Notwithstanding, there is a tendency towards the use of ConcurrentHashMap as a replacement for other associative
data structures in a number of projects.

RQ6: How often do developers employ condition-based synchronization? A large number of concurrent
projects include invocations of the notify(), notifyAll(), or wait() methods. At the same time, we noticed that a
small number of projects have eliminated many uses of these methods, employing the CountDownLatch class, part of
the java.util.concurrent library, instead. This number is not large enough for statistical analysis. Nevertheless,
it indicates that mechanisms with simple semantics like CountDownLatch have potential to, in some contexts, replace
lower-level, more traditional ones.

RQ7: Do developers attempt to capture exceptions that might cause abrupt thread failure? Our data in-
dicate that less than 3% of the concurrent projects implement the Thread.UncaughtExceptionHandler interface,
which means that, in 97% of the concurrent projects, an exception stemming from a programming error might cause
threads to die silently, potentially affecting the behavior of threads that interact with them. Moreover, analyzing these
implementations, we discovered that developers often do not know what to do with uncaught exceptions in threads,
even when they do implement a handler. This provides some indication that new exception handling mechanisms that
explicitly address the needs of concurrent applications are called for.

To provide a basic intuition as to what developers believe to be true about the usage of concurrent programming
constructs, we have also conducted a survey with more than 160 software developers. These developers are all com-
mitters of projects whose source code we have analyzed. This survey presented respondents with various questions,
such as “What do you believe to be the most often used concurrent/parallel programming construct of the Java lan-
guage?”. Throughout the paper, we contrast the results of this survey with data obtained by analyzing the Java source
code.

This work makes the following contributions:

• It is the first large-scale study on the usage of concurrent programming constructs in the Java language, includ-
ing an analysis on how the usage of these constructs has evolved along time.

• It presents a considerable amount of data pertaining to the current state-of-the-practice of real concurrent
projects and the evolution of these projects along time.

• It presents results from a survey conducted with committers of some of the analyzed projects. This survey
provides an overview of the perception of developers about the use of concurrent programming constructs.

The rest of the paper is organized as follows: Section 2 presents some background on concurrent programming in
Java. Section 3 describes our survey setup and some initial results. Next, in Section 4, we describe the infrastructure
we employed to download and extract the analyzed data. In Section 5 we present the results of our study organized
in terms of the research questions. We then present the threats to the validity of this work in Section 6 and some
implications in Section 7. Section 8 is dedicated to related work. Finally, in Section 9, we present our conclusions
and discuss future directions.

2. Background

Before presenting our study, we provide a brief background on concurrent programming. A detailed presentation
about concurrent programming concepts is available elsewhere [7].

Generally speaking, processes and threads are the main abstractions of concurrent programming. A process is a
container that keeps all the information needed to run a program, for instance, the memory location where the process
can read and write data. A thread, on the other hand, can be seen as a lightweight process. Even though threads have
different implementations, threads and processes differ from each other in a way that multiple threads can exist within
the same process and share its own data, while different processes do not share resources. Also, threads can share
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source code information. This feature is a double-edge sword, since it came with the cost of well-known concurrency
bugs such as race conditions.

However, one of the main reasons to work with threads is because they are easier and faster than processes since
threads have no resources associated. For instance, creating a thread can be one hundred times faster than creating a
process [7].

On a single processor, multithreading generally occurs by time-division multiplexing. In other words, the proces-
sor switches between different threads. This context switching generally happens fast and the end-user perceives that
the threads are running at the same time. On a multiprocessor, or in a multi-core system, the threads or tasks will
actually run at the same time, with each processor or core running a particular thread. The number of threads running
at the same time is now bounded by the number of available processors.

Concurrent programming has been an exciting area of research in the last decade. Although no consensus has
emerged on a single model of concurrency, many advances have been made with the development of various contend-
ing models [8, 9]. Besides that, regardless of the model of concurrency, many researchers [3, 4, 10, 11] argue that
high level concurrency libraries can improve software quality.

The java.util.concurrent library aims to simplify the development of concurrent applications in the Java
language. Using this framework, even a less experienced programmer can write working concurrent applications.
The java.util.concurrent library offers several features to make the task of concurrent programming easier. In
addition, the library is optimized for performance. Below we discuss some of its most well-known constructs. We
assume the reader is familiar with the Java programming language and with basic concepts of concurrent program-
ming, such as locks, mutual exclusion, and condition-based synchronization. The java.util.concurrent library
includes some constructs, such as semaphores and exchangers, that we do not discuss in this paper because they are
very seldom used. For instance, we found out that the Semaphore class has never been used in the analyzed projects.

Locks: Implementations of the Lock interface, such as ReentrantLock, support more flexible locking than can be
performed using synchronized methods and blocks. They promote more versatile structuring, may have different
properties depending on how threads access data, and may support multiple associated Condition (an interface
defining condition variables associated with a lock) objects. A lock is a tool for controlling access to a shared resource
by multiple threads. In general, a lock provides exclusive access to a shared resource: only one thread at a time can
acquire the lock and every access to the shared resource requires that the lock be acquired first. However, some locks
may allow concurrent access to a shared resource, such as the read lock of a ReadWriteLock. Lock implementations
provide additional functionality over the use of synchronized methods and blocks by supporting non-blocking
attempts to acquire a lock (tryLock()), and attempts to acquire lock that can be interrupted.

Atomic Data Types: These data types are provided by a small toolkit of classes that support lock-free, thread-
safe programming on single variables. In essence, the classes in the java.util.concurrent.atomic package
extend the notion of volatile values, fields, and array elements, providing an atomic conditional update operation
using the compareAndSet() method. This method atomically sets a variable if its current value equals that of the
method’s first argument, returning true on success. The classes in this package also contain methods to get and
unconditionally set values, and to increment and decrement the value of the variable. Examples of classes in this
package are AtomicBoolean, AtomicInteger and AtomicIntegerArray.

Concurrent Collections: It is a group of Collections designed for use in multithreaded contexts. This group in-
cludes ConcurrentHashMap, CopyOnWriteArrayList, CopyOnWriteArraySet, and ArrayBlockingQueue. The
Concurrent prefix used with some classes in this package is a shorthand indicating several differences from similar
synchronized classes, which employ a single lock for the entire collection. For example the classes Hashtable and
Collections.synchronizedMap(...) are synchronized, but ConcurrentHashMap is “concurrent”. A concurrent
collection is thread-safe, but not governed by a single lock. ConcurrentHashMap, in particular, safely permits any
number of concurrent reads as well as a tunable number of concurrent writes.

Condition-based synchronization: java.util.concurrent provides some classes that can replace the wait()

and notify() methods. CountDownLatch is a synchronization aid that allows one or more threads to wait until a
set of operations being performed in other threads have all been completed. A CountDownLatch waits for N threads
to finish before allowing all of them to proceed. CyclicBarrier is another synchronization aid. It allows a set of
threads to all wait for each other to reach a common barrier point.
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Executors: Executors, embodied by the Executor interface and its implementations and sub-interfaces, support
multiple approaches for managing thread execution. They provide an asynchronous task execution framework. An
ExecutorService manages queuing and scheduling of tasks, and allows controlled shutdown. ExecutorService
interface and its implementations provide methods to asynchronously execute any function expressed as a Callable,
the result-bearing analog of Runnable. The ScheduledExecutorService subinterface adds support for delayed
and periodic task execution. A Future returns the results of a function, allows determining whether the execution has
completed, and provides the means to cancel execution. Its implementations provide tunable, flexible thread pools.
The Executors class provides factory methods for the most common kinds and configurations of Executors, as
well as a few utility methods for using them2.

3. Survey

We have conducted a survey with programmers in order to gather information about the perception of developers
about the usage of concurrent programming constructs in Java. Using this information we can check whether the
intuition of these developers is reflected by the source code of real systems. The questionnaire was designed to the
recommendations of Kitchenham et al. [12], following the phases prescribed by the authors: planning, creating the
questionnaire, defining the target audience, evaluating, conducting the survey, and analyzing the results. Firstly, we
defined the topics for the questions. The topics are: respondents’ experience, how familiar they are with concurrent
programming and, lastly, we asked direct questions about the state of use of concurrent programming techniques.
The questionnaire had nine questions and is structured to limit responses to multiple-choice, Likert scales (responses
given in a scale which starts from 0 until 10, where 0 means no knowledge at all and 10 means super expert), and also
free-forms. It includes a single question (#9) where the respondents could answer using free text.

After defining all the questions in the questionnaire, we obtained feedback iteratively and clarified and rephrased
some questions and explanations. This feedback was obtained from analysis and discussion with a group of specialists
and also from one pilot of the survey. Together with the instructions of the questionnaire, we included some simple
examples as an attempt to clarify our intent. Table 1 presents the questions of the questionnaire. The complete list of
questions as well as all the responses of the survey are available at the companion website of the paper 3.

Our target population consists of programmers who have performed at least one commit to an open-source soft-
ware analyzed in this work. It is important to mention that this work analyzed projects on SourceForge, which uses
Subversion as its default version control system. Nonetheless, Subversion does not necessarily keep track of the email
address of the commit author. For example, the commit author could use either an anonymous id or a pseudonym. The
latter is, in fact, more commonly used than the email address. Another problem with SourceForge is that old reposito-
ries are fairly often external to SourceForge, which makes it hard to track them for a large number of projects. Then,
in order to gather the email address of these programmers, we investigated which projects have moved to Github,
since it makes it easier to find the email address of committers. We have found 72 projects that have moved to Github.
In these projects, we have found 2,353 unique email addresses, but only 1,953 of them were valid. When sending
the survey to these programmers, 273 email messages have been rejected by the server with unknown domain notices
and another 18 have been auto-responsed with out-of-office messages. Over a period of 20 days, we obtained 164
responses, resulting in a 9.75% response rate. This response rate is almost twice higher than the response rates found
in surveys in the software engineering field [12]. Table 2 synthesizes the survey data.

As we can see in the above table, 26% of the respondents have more than 12 years of software development expe-
rience and, on average, the respondents consider themselves to be moderately experienced in concurrent programming
(a value 6 on a scale from 0 to 10, where 0 means no knowledge at all, and 10 means an expert). In their experience,
the top five most used concurrent programming constructs are the same found on the first versions of the Java lan-
guage. Also, on average, they believe that half of the open-source projects use at least one basic concurrent construct
and 30% of the projects employ the java.util.concurrent library.

2Throughout the paper, we often employ the term “executors constructs”. We use it to refer to classes related to the Executor framework, such
as Executor, ExecutorService, ScheduledExecutorService, Executors, among others.

3http://www.cin.ufpe.br/˜groundhog
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Table 1. The Survey Questions

1. How many years do you have developing Java projects?
2. Which is your experience using the default Java concurrent/parallel constructs?

3.
Choose one or more of the following concurrent/parallel programming constructs that you
have used in a Java project

4.
What do you believe to be the percentage of open-source Java projects that use at least one
concurrent/parallel construct (explicitly on the source code, not as a third-party library)?

5.
What do you believe to be the percentage of open-source Java projects that use at least one
construct of the java.util.concurrent library (explicitly on the source code, not as a
third-party library)?

6.
What do you believe to be the most often used concurrent/parallel programming construct of
the Java language?

7.
Which you believe to be the most often used construct of the java.util.concurrent li-
brary?

8.
Have you ever been involved in, or heard about, some sort of initiative within a Java project
in which you work, or have worked, aiming to improve the performance or the scalability of
the application through the use of concurrent/parallel programming techniques?

9. If so, could you briefly describe this experience?

In addition, 53% of the respondents said they have used concurrent programming techniques to improve the
performance and/or the scalability of an application. One of the anonymous respondents has detailed how difficult it
is to write correct concurrent programs – and how they have achieved performance improvements:

Concurrency is hard on many levels - effectively parallelizing code, avoiding potential deadlocks, etc. If
not all the developers in the project are disciplined, it is also easy to slip on practices such as the pedan-
tically correct use of try-finally when managing locks, etc. and to create fragile concurrent code. Java
constructs help somewhat with the details, but the main burden still falls on the programmer understand-
ing concurrency and its implications thoroughly. There are numerous pitfalls also in the language (e.g.
long not guaranteed to be atomic in all environments) that java.util.concurrent utilities can help with, but
only when the programmer understands the problem and knows what approaches and utilities to use to
avoid it. The newer JLS versions have patched up some problems (e.g. if I remember correctly, now you
can count on all statements in a constructor having completed before the constructor returns, which was
not the case before), but the idiosyncrasies of the language still put a great burden on the developer to
know all the pitfalls or to develop ultra-defensively.

In the remainder of this paper, we discuss the main findings of the survey based on the seven research questions
stated in Section 1.
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Table 2. The Survey Responses
# Question Response
1. 1 to 2 years⇒ 5%

2 to 5 years⇒24%
5 to 8 years⇒ 22%
8 to 12 years⇒ 24%
more than 12 years⇒ 26%

2. (no knowledge at all) 0⇒ 0%
1⇒ 6%
2⇒ 5%
3⇒ 7%
4⇒ 9%
5⇒ 12%
6⇒ 15%
7⇒ 20%
8⇒ 20%
9⇒ 3%
(a super-expert) 10⇒ 2%

3. synchronized keyword (block statement)⇒ 5%
synchronized keyword (method statement)⇒ 5%
java.lang.Thread⇒ 5%
java.lang.Runnable⇒ 5%
Object.wait() method⇒ 4%

4. Median⇒ 50%
Mean⇒ 51.43%
SD⇒ 28.48%

5. Median⇒ 30%
Mean⇒ 36.63%
SD⇒ 25.69%

6. synchronized keyword (method statement)⇒ 36%
synchronized keyword (block statement)⇒ 21%
java.lang.Thread⇒ 19%
java.lang.Runnable⇒ 16%
Others⇒ 7%

7. java.util.concurrent.ConcurrentHashMap⇒ 21%
va.util.concurrent.ExecutorService⇒ 13%
java.util.concurrent.ConcurrentMap⇒ 12%
java.util.concurrent.Executor⇒ 10%
java.util.concurrent.Future⇒ 10%

8. Yes⇒ 53%
No⇒ 47%
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4. Study Setting

This section describes the configuration of our study: our basic assumptions, our mining infrastructure, and the
metrics suite that we employed.

We have built a set of tools to download projects from SourceForge, analyze the source code, and collect metrics
from these projects. It comprises a crawler, a metrics collection tool, and some auxiliary shell scripts. We call this
infrastructure Groundhog. Figure 1 depicts the infrastructure we employed. Initially, the crawler populates the project
repository with Java projects from SourceForge, including their various versions (a).

We obtain the projects by means of HTTP requests, instead of directly accessing the source code repositories of
the projects. We use this approach because we are only interested in analyzing project releases, stable versions that are
available to the general public. Source code repositories often do not clearly identify releases and, when they do, they
employ inconsistent approaches. On the other hand, SourceForge makes it relatively easy to obtain release versions
by means of HTTP requests.

When the projects have all been downloaded, all the compressed files are extracted into our local repository (b).
We are currently capable of uncompressing zip, rar, tar, gz, tgz, bz2, tbz, tbz2, bzip2, and 7z files. After that, the
metrics collection tool parses the source code, collects metrics, and stores the results in the metrics repository (c).
Finally, it generates input, as CSV files, to be statistically analyzed by R[13].

The crawler is an extension of Crawler4j4, an open source web crawler framework. This framework is multi-
threaded and written in Java. We also implemented additional scripts to organize project versions based on dates
available at SourceForge and to check if the target project was ready to be analyzed, fixing its structure when neces-
sary. To collect concurrency metrics we used the JavaCompiler5 class to parse the source code and build parse trees.
The trees are traversed and the metrics are extracted and stored in text files.

The metrics consist of counting LoC of classes that extend the Thread class, of classes that implement the
Runnable interface, and of uses of some Java keywords such as synchronized and volatile, as well as num-
ber of instantiations of types belonging to the j.u.c. library, such as AtomicInteger, ConcurrentHashMap,
ReentrantLock, and many others. Table 3 lists the elements whose number of occurrences we have measured.

Our analysis focuses exclusively on mature and stable projects, as identified by the project developers. Further-
more, projects that did not have at least one release after 2004 are not considered, because java.util.concurrent
was released as part of the JDK in December 2004. Moreover, we have only examined projects with at least 1,000
LoC, to avoid trivial systems. We have analyzed the projects considering both their most recent versions and their
evolution along time. In the latter case, we have studied multiple versions of the projects. To better understand their
evolution, we have also computed the differences in the values of some metrics considering recent and old versions of
the systems. We then calculated the Pearson correlation [14] between these differences. This has helped us to identify,
for example, that a number of projects exhibit a tendency to switch from extending the Thread class directly to using
executors to manage thread execution.

4http://code.google.com/p/crawler4j/
5http://docs.oracle.com/javase/6/docs/api/javax/tools/JavaCompiler.html

Figure 1. In (a) the crawler populates the infrastructures repository with Java Projects from Sourceforge. In (b) a shell script extracts all compressed
files into our local repository. In (c) the metrics collection tool parses the source code, collects metrics, and stores the results in the metrics
repository. In (d) the metric collection tool generates input CSV files to be statistically analyzed by R.
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Table 3. Collected metrics: constructs that had their number of occurrences counted, e.g., “implements Runnable” is the number of classes
implementing the Runnable interface in the program.

Group Metrics
Light Weight Threads AbstractExecutorService, Executor, ExecutorService, Future, FutureTask,

ForkJoinTask, ForkJoinPool, ThreadPoolExecutor, RecursiveAction, Recursive-
Task, RunnableFuture, RunnableScheduledFuture, ScheduledFuture, Sched-
uledExecutorService, ScheduledThreadPoolExecutor

Atomic Data Type (ADT) AtomicBoolean, AtomicInteger, AtomicLong
Synchronized Collections methods Collections.synchronizedCollection(), Collections.synchronizedList(), Col-

lections.synchronizedMap(), Collections.synchronizedSortedMap(), Collec-
tions.synchronizedSet(), Collections.synchronizedSortedSet()

Concurrent collections HashMap, ConcurrentHashMap, ConcurrentMap, ConcurrentSkipListMap,
ConcurrentNavigableMap, ArrayBlockingQueue, PriorityBlockingQueue,
LinkedBlockingQueue, SynchronousQueue, LinkedTransferQueue, Block-
ingQueue, DelayQueue, LinkedBlockingDeque

Locks Locks, ReentrantReadWriteLock, ReentrantLock
Lock methods ReentrantReadWrite.Writelock, ReentrantReadWrite.Readlock
Thread class methods Thread.setDefaultUncaughtExceptionHandler, Thread.UncaughtException,

Thread.setUncaughtExceptionHandler, Thread.UncaughtExceptionHandler
Thread creation extends Runnable, implements Runnable, implements Callable, extends Thread,

new Thread()
Synchronization synchronized (blocks), synchronized (methods), Condition, CountDownLatch,

CyclicBarrier, notify(), notifyAll(), Semaphore, volatile, wait()
Other Hashtable

All results presented in this article are normalized to avoid distortions caused by very large absolute values and to
make them more directly comparable. For example, to calculate the result for the metric implements Runnable for
the version of the Dr.Java project released in 22-08-2011, we have divided the number of occurrences of implements
Runnable, which is 6, by the number of lines of code, which is 112,703, resulting in 0.000053238. This result was
then multiplied by 100,000 and the final result is 5.3238. All the collected metrics were normalized in this fashion
and we use these normalized values in the remainder of the paper. References to absolute values throughout the paper
are clearly presented as such. Both the absolute and the normalized values for all the metrics are available in the
companion website of the paper.

Finally, based on the survey results, we pose a number of assumptions that represent the expectations of developers
regarding the state-of-the-use of some concurrent programming techniques. Our assumptions are the following:

A1 Java projects frequently employ concurrent programming constructs (mean estimate: 51,43%);

A2 Java projects frequently employ constructs from the j.u.c library (mean estimate: 36.63%);

A3 synchronized methods are the most frequently used concurrent programming construct;

A4 ConcurrentHashMap is the most frequently used concurrent programming construct from the j.u.c. library;

A5 Initiatives to reengineer existing systems so as to leverage multicore architectures are commonplace.

5. Study Results

This section presents the results of our study. We organized the results in terms of the research questions.

5.1. RQ1: Do Java applications use concurrent programming constructs?
This study analyzed 2,227 projects, of which 1,723 include at least one occurrence of a concurrent programming

construct (77.5% of them). Also, the fourth question of the survey is directly associated with this research question.
On average, the respondents believe that 51.12% of the projects use at least one concurrent programming construct
(median of 50%), with standard deviation of 28.67. Hereafter, we refer to these projects as “concurrent projects”.
Among these projects, only 400 (23.21%) use the java.util.concurrent library. Moreover, this library had been
available for general use for at least five years before it was incorporated into the JDK. According to question 5 of
the survey (Table 1), on mean, survey respondents believe that 36.1% (median 30.0%, standard deviation 25.42) of
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Table 4. General information about the projects.
#Projects 2,227
#Small Projects 1,700
#Medium Projects 616
#Large Projects 197
#Concurrent projects 1,723
#Concurrent projects that use java.util.concurrent 400
#Non concurrent projects 504
# of LoC (all versions of all projects) 623,440,010
# of LoC (all versions of concurrent projects) 612,897,893
# of LoC (all versions of non concurrent projects) 10,542,117
Size on disk (all versions of all projects in GB) 124
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Figure 2. Percentage of project releases, per year, that include concurrent programming constructs.

the concurrent projects employ these constructs. Based on these results, it is fair to say that, for the population under
study, the use of concurrent programming constructs is more common than most developers believe (A1). On the other
hand, their intuition about the use of the java.util.concurrent library varies widely, with the actual percentage of
concurrent projects that employ it being smaller than the standard deviation of the responses of the developers (25.42).

Table 4 presents some general size metrics for the analyzed projects. The sum of large (100,001+ LoC), medium
(20,001 - 100,000 LoC) and small (1,000 - 20,000 LoC) projects is not equal to the overall number of projects. This
happens because some projects can be in more than one category, e.g., a small project might become a medium project
along its evolution and be counted in both categories. Moreover, it is interesting to notice that, even though more than
22% of the projects are not concurrent, the sum of the LoC of these projects corresponds to just 1.65% of the total. The
mean non-concurrent project has 28,946 LoC and presents median 6,313 LoC, whereas the mean concurrent project
has 41,173 LoC and presents median 12,419 LoC.

Tables 10 to 13 introduce descriptive statistics pertaining to some of the collected metrics. This information refers
only to the latest versions of the projects. More than 60% of the small projects, more than 90% of the medium projects,
and all large projects employed some concurrent programming mechanism up to May 2012. Figure 2 presents the
percentages of project releases, per year, that include concurrent programming constructs, considering small, medium,
and large projects. The data in the aforementioned figure shows that the percentage of concurrent projects released
per year has not changed significantly since 2005.

We consider that a project is concurrent if its last version has a value greater than zero for any of the col-
lected metrics. In practice, this means at least one occurrence of implements Runnable, extends Thread, or
the synchronized keyword. This is consistent with the survey respondents in question 6: among them, 92% believe
that these constructs are the most often used in concurrent projects. In fact, most concurrent projects go well beyond a
single occurrence of a concurrent programming construct. According to Table 12, most concurrent projects have over
48 synchronized methods and 31 synchronized blocks per 100KLoC. Furthermore, in Table 10 the median num-
bers of classes per 100KLoC implementing the Runnable interface for small, medium, and large concurrent projects
are 27.29, 7.18, and 3.73, respectively.

Most of the concurrent projects use low-level concurrency control mechanisms and a smaller number employ the
high-level abstractions of the java.util.concurrent library. We observed that the basic concurrent Java program-
ming constructs are more popular than the java.util.concurrent constructs, which is consistent with the survey
results. These constructs have been introduced in the first version of the Java language and have been available ever
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Table 5. Project Category.
Category # Concurrent Projects Domain Category Non Concurrent Projects
Software Development 625 Software Development 233
Internet 267 Scientific / Engineering 74
Scientific / Engineering 265 Internet 58
System 242 Office / Business 56
Office / Business 233 Games / Entertainment 39
Multimedia 192 Multimedia 39
Communication 190 Formats and Protocols 38
Database 139 Education 35
Games Entertainment 134 Database 33
Formats and Protocols 116 System 24
Education 96 Text Editors 15
Text Editors 67 Communication 14
Security 60 Security 11
Other 28 Other 9
Desktop Environment 25 Printing 7
Mobile 12 Mobile 3
Printing 9 Desktop Environment 2
Terminals 8 Terminals 1
Social Engineering 3
Religion / Philosophy 1

since. The most usual way to create threads is through the implementation of the Runnable interface. It occurs in
47.16%, 66.27%, and 86.89% of small, medium, and large concurrent projects, respectively. To control access to
shared state, synchronized methods are the most frequently used construct, being present in 70.98%, 92.37%, and
97.57% of small, medium, and large concurrent projects, respectively. Tables 10 and 12 also shows that ensuring mu-
tual exclusion and managing concurrent/parallel execution are recurring problems even for small applications: 47.16%
of them include classes that implement the Runnable interface and more that 70% include synchronized methods.
The latter suggests that A3 is realistic. New techniques to solve these problems have therefore ample opportunity for
adoption.

Tables 11 and 13 show that among the constructs of the java.util.concurrent library, atomic variables and
ConcurrentHashMap have the strongest adoption. In particular, 29.94% of the large projects employ the former and
27.91% use the latter. Medium and small projects use these constructs less often. The survey respondents (21% of
them) also believe that ConcurrentHashMap plays an important role in the high-level constructs (Assumption A4).
Nonetheless, 51 respondents believe that Executors are more often used than atomic data types (11 respondents) in
the java.util.concurrent library. It should be noted that some constructs have rarely been adopted. For example,
the PriorityBlockingQueue and ConcurrentSkipListMap are employed by approximately 1.45% of the large
concurrent projects (3 projects each). However, among the survey respondents, 48 (29.26%) claim to have used
these constructs (PriorityBlockingQueue: 25 respondents, ConcurrentSkipListMap: 23 respondents). One
system can take advantace of ConcurrentSkipListMap in order to guarantees good performance on a wide variety
of operations. Also, besides the fact that these collections have a number of operations that ConcurrentHashMap
does not have (such as ceilingEntry, ceilingKey, floorEntry among others), it also maintains a sort order,
which would otherwise have to be calculated. Among the small projects, less than 0.4% use these constructs. This
result suggests that there is room for improving existing systems. Skip lists [15] are known to be scalable and fast
for search operations even in the presence of concurrent threads. Nevertheless, few systems use them, possibly due
to developers not being familiar with them. As mentioned before, we did not find projects that employ semaphores,
though 47 respondents (28.7% of all the respondents) have mentioned they have used this construct in a professional
Java project.

Moreover, we analyzed the domain of our projects in order to understand how concurrent constructs usage is
related to the project domain. We used the default domain metadata available at the SourceForge webpage of the
project. Although important, developers are not required to inform the category of their projects. In earlier versions of
SourceForge, it was possible to set more than three categories for a project. Nowadays, however, developers can set
up to three categories for a given project. Table 5 shows the how concurrent constructs are used over these categories.

As Table 5 shows, the categories that have more projects are almost the same in both concurrent and non-
concurrent projects. For example, the first three categories are the same and, among the top 10, the only difference is
“Communication” (for concurrent projects) instead of “Education” (for non concurrent projects). Since categorization
is not a required feature, not all downloaded projects had been categorized. Table 6 presents the number of categories
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Table 6. Summary Project Domain Category.
# Projects with categories 2090
#Projects with 1 category 1168
#Projects with 2 categories 611
#Projects with 3 categories 253
#Projects with 3+ categories 50
#Projects without categories 137

Table 7. The most used metric by category.
Cateogory The most used metric
SoftwareDevelopment sync methods
Internet HashMap
ScientificEngineering sync methods
System sync methods
OfficeBusiness HashMap
Multimedia sync methods
Communication sync methods
Database sync blocks
GamesEntertainment sync methods
FormatsandProtocols sync methods

per project.
According to the subcategorization presented in SourceForge, the “System” category should be used for projects

related to “Operating System Kernels”, “Emulators” and others low level technical features. Similarly to the “Sys-
tem” category, “Games/Entertainment” also has a significant difference between concurrent projects (78%) and non-
concurrent ones (22%). Another interesting fact is that 94% of all “Communication” projects are concurrent.

We also analyzed the most intensively used metrics in categories that have more than 100 projects. The most pop-
ular metrics are: synchronized methods, HashMap, synchronized blocks, Hashtable, implements Runnable,
wait(), extends Thread, java.util.concurrent, notifyAll(),notify(), and volatile. Generally speak-
ing, we found that there was little variation among the 10 most intensively used metrics across the project categories.
According to the Table 7, synchronized methods are the most intensively used concurrent programming construct
in 7 out of 10 categories.

As presented in Table 8, at least half of all projects do not use four of the most intensively used metrics for each
category, for example, in category System, the metrics j.u.c, wait() , volatile, and notifyAll() have median
zero, i.e., half of these projects did not employ these metrics.

In addition, we figured out that the preferred way to create threads in almost all categories was through the
implementation of the Runnable interface. The only category which did not follow this rule was Communication.
Communication projects prefer creating threads by extending the Thread class.

The synchronized blocks and synchronized methods are the most popular ways of guaranteeing mutual ex-
clusion in the analyzed domains: these are among the three most used metrics in all the categories. Another possible
way of implementing synchronization would be through the Lock interface, but we did not find usage of this interface
in the top 10 metrics in the analyzed categories.

Finally, although the java.util.concurrent library was used in all domains, the developers did not use
ConcurrentHashMap instead of HashTable and HashMap. Both HashTable and HashMap have been widely used in
all categories. A detailed report with descriptive data can be found at the companion website 6. As for the actual files
of the projects we’ve downloaded, due to the sheer amount of data, we are unable to make it permanently available
on-line, but we’re happy to share it on-demand.

5.2. RQ2: Have developers moved to library-based concurrency?
To try to answer this question, we have studied the temporal evolution of concurrent Java programs. To obtain

these results, we analyzed the latest versions of projects launched each year, until May 2012. It is important to say that
it was not possible to download all the versions of some projects due to name changes between versions. In general,
we found out that java.util.concurrent has been adopted more intensively along the years. Figure 3 shows this
trend: the usage of java.util.concurrent increased from less than 10 uses per 100KLoC in 2006 to almost 30

6http://www.cin.ufpe.br/˜groundhog
12
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Table 8. The most used metric by “System” projects category.
Metric Total Mean Median Standard Deviation
sync methods 41806,34 172.75 75.64 245.68
sync blocks 22627,46 93.50 34.03 155.33
HashMap 22571,22 93.27 60.57 112.01
Hashtable 5846,93 24.16 1.85 56.34
implements Runnable 5324,07 22.00 6.58 39.74
j.u.c. 5174,92 21.38 0 73.15
extends Thread 4642,36 19.18 2.19 40.70
wait() 4095,02 16.92 0 36.09
volatile 2905,51 12 0 33.80
notifyAll() 2517,94 10.40 0 29.64
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Figure 3. Uses of j.u.c. constructs per 100KLoC, considering the project versions released each year.

uses per 100KLoC in 2011. To obtain the results presented in Figure 3, we have not taken into account the size groups
(small, medium and large). We used the median of occurrences of java.util.concurrent constructs in the latest
version of all projects released each year. In parallel we summed the number of lines of code of the selected project
versions. Finally we divided the former by the latter and multiplied the result by 100K to normalize it (Section 4).

Figure 4 provides a different perspective. It shows, among the small, medium, and large projects, the per-
centage of project releases that are concurrent, per year, as well as the percentage of project releases that employ
java.util.concurrent. The figure also shows, for example, that more than 20% of all versions of small projects
released in 2011 use the java.util.concurrent library. For medium and large projects, that percentage reaches
almost 40% and almost 60%, respectively. However in 2012 (up to may) no released large project had employed
java.util.concurrent. According to Table 4, 17.96% of all analyzed projects use the java.util.concurrent

library. Figure 4 shows that versions of medium and large projects (and of the small ones, after 2008) consistently
use the library more frequently than the 17.96% presented in Table 4. These results suggest that projects using the
library are released more often than the mean. Otherwise, we would see mean frequencies of use that would more
closely match those 17.96%. The bottom line is that, even though a large percentage of the projects does not use
the java.util.concurrent library, many of them have not seen releases in the last few years. On the other hand,
projects using the library have been in more active development, which suggests that it is used more frequently in
practice than one would believe on a first examination.
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Figure 4. Percentage of concurrent project releases, with and without the use of j.u.c., released between 2005 and 2012. Only the most recent
versions of these projects were taken into account.

We have analyzed the evolution of the usage of concurrent programming constructs by comparing, in pairs, how
13
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the corresponding metrics have evolved for the projects in our study. For each of the metrics of Table 3, we obtained
the difference between its values in the first and last versions. We call this difference the delta. As an example, we
can calculate the deltas for uses of ReentrantLock and synchronized blocks in the Liferay Portal project. This
project, one of the largest in this study, comprising more than 1,661,000 LoC. The oldest version of this proejct that
we analyzed does not use ReentrantLock. On the other hand, the most recent version has 0.6621 occurences of
ReentrantLock per 100KLoC. In this case, the delta is 0.6621, which represents the difference between 0.6621
(recent version) - 0 (first version). On the other hand, the delta for synchronized blocks is -40.271, which refers to
the difference between the most recent version, 6.199, and the first version, 46.471. We then proceeded to calculate
the Pearson correlation between deltas for each pair of metrics we wanted to analyze. In other words, we did not
compare different projects but the evolution of two different metrics for the same project. It is important to notice that
selected projects had to have at least one occurrence of both analyzed metrics in at least one of the two versions. Some
examples of metric correlations are presented in Table 20. We present the correlation7 results in Sections 5.3–5.6.

Table 9. Metrics involved in large changes.
Metric Projects How they changed
AtomicBoolean 2 All increased
AtomicInteger 4 All increased
Concurrent collections 1 All increased
Executors Contructs 2 All increased
extends Thread 5 All increased
implements Runnable 4 3 increased, 1 decreased
import j.u.c 2 All increased
notify() 1 All increased
notifyAll() 3 All increased
sync blocks 14 All increased
sync methods 17 16 increased, 1 decreased
volatile 7 All increased
wait() 1 All increased

In this study, we have also identified projects that exhibited large increases or decreases in the use of a concurrent
programming construct during the analyzed period. In the cases where we detected more intense changes between
releases, we decided to perform a manual analysis to find out the reasons behind these changes. Since we could not
perform this kind of analysis for more than 2000 thousand projects, we established criteria to determine what it meant
for a project to exhibit a large increase or decrease in the value of the metrics. The selected projects were those that had
at least two releases and an increment of over 50% in a given metric between these releases. In addition, the highest
absolute (not normalized) value of the metric should be higher than the value of the third quartile of all projects in that
metric. In this manner, we can avoid having to examine projects with small values for the metrics, e.g., a project that
had one synchronized block in the first release and two in the following one. By applying these criteria, we selected
a total of 55 projects for manual inspection. Table 9 shows the metrics that exhibited large increases or decreases and
the number of projects it was observed. Projects may have more than one metric involved in large changes.

Table 10. Thread creation projects metrics per 100KLoC by categories (small/medium/large projects, respectively), considering only concurrent
projects.

Metrics Median Mean %Concurrent Projects
S M L ALL S M L ALL S M L ALL

# extends Runnable 19.32 2.38 0.80 2.29 19.78 4.87 1.45 7.43 1.14 2.41 10.15 2.49
# extends Thread 25.04 6.05 2.81 12.21 42.62 9.98 5.61 27.07 40.48 63.44 76.64 50.55
# Executors Constructs 20.92 4.07 1.79 5.16 34.82 13.51 3.68 18.99 6.12 14.65 32.48 11.14
# implements Runnable 27.29 7.18 3.73 14.42 46.85 12.21 7.54 31.31 47.10 66.03 86.80 56.99
# implements Future 27.17 1.63 0.76 1.60 23.73 2.21 1.21 4.76 0,24 1,89 5,58 1,27
# FutureTask 27.17 2.25 0.91 1.82 38.02 3.64 1.71 9.80 0.40 1.89 5.07 1.39

We used the following methodology to guide our manual analysis of the code. First, we analyzed the source
code of each project release searching for one of these string patterns: “AtomicBoolean”, “AtomicInteger”, “Con-
currentHashMap”, “Executor”, “ExecutorService”, “ScheduledExecutorService”, “extends Threads”, “implements
Runnable”, “import j.u.c”, “notify()”, “notifyAll()”, “synchronized”, “synchronized methods”, “volatile”, and “wait()”.

7Due to the extensive number of possible correlations, most of the time we only present results that have, at least, weak correlations (correlation
value between 0.1 to 0.3 and -0.3 to -0.1). We make a few exceptions to this rule for illustrative purposes.
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Table 11. Atomic data type (ADT) projects metrics per 100KLoC by categories (small/medium/large projects, respectively), considering only
concurrent projects.

Metrics Median Mean %Concurrent Projects
S M L ALL S M L ALL S M L ALL

# Atomic variables 22.89 8.48 1.56 8.25 48.46 17.87 8.29 22.51 3.26 10.68 29.94 8.53
# AtomicBoolean 15.90 3.01 1.53 3.16 22.41 6.74 3.69 8.69 1.30 5.68 16.24 4.41
# AtomicInteger 17.28 6.85 1.10 6.18 45.85 11.29 4.54 16.88 2.28 9.13 24.36 6.79
# AtomicLong 20.21 4.62 1.43 2.40 30.84 10.38 5.01 11.11 0.89 4.82 15.73 3.77

Table 12. Synchronization mechanisms projects metrics per 100KLoC by categories (small/medium/large projects, respectively), considering only
concurrent projects.

Metrics Median Mean %Concurrent Projects
S M L ALL S M L ALL S M L ALL

# Condition 21.76 5.03 0.93 5.43 37.33 9.69 3.54 13.96 0.89 3.62 11.67 2.66
# CountDownLatch 17.63 6.42 1.53 6.40 27.01 15.04 9.08 15.95 1.38 4.31 12.69 3.48
# CyclicBarrier 9.24 3.11 1.13 2.55 16.84 10.71 2.42 9.35 0.32 2.37 4.85 1.26
# sync blocks 73.47 33.13 31.42 51.63 152.29 74.87 72.25 116.57 53.55 83.44 93.90 65.93
# sync methods 81.29 54.49 48.20 69.61 184.28 99.20 89.86 152.02 71.18 92.75 97.96 79.16
# notify() 26.26 5.83 2.41 7.89 41.66 10.86 5.44 21.01 14.36 37.24 53.29 24.60
# notifyAll() 23.32 6.42 2.77 9.44 50.56 11.67 7.47 25.33 15.91 40.86 62.43 27.27
# volatile 30.75 8.86 3.64 11.82 70.04 31.16 19.76 41.27 14.12 31.37 62.94 24.26
# wait() 25.36 7.22 3.97 11.02 46.86 14.21 11.18 27.93 27.75 57.75 72.08 40.22
# ReentrantLock 20.31 3.28 0.94 2.86 35.19 10.67 3.06 12.83 1.71 8.44 20.81 5.51
# ReentrantReadWriteLock 10.96 4.02 0.64 1.89 17.42 10.16 1.23 7.08 0.89 3.62 15.22 3.13

These patterns were chosen because all the large changes involved the corresponding metrics. We compared the source
code modifications in the newer release against the older one. We also analyzed bug reports and the on-line release
notes of the projects, whenever they were available.

We identified three main reasons for dramatic changes in the values of the metrics: refactoring (30 instances),
new features (30 instances), and testing/sample code (6 instances). Table 14 describes the categories and the number
of occurrences for each one of them. A refactoring occurs when, for instance, the project includes a new use of a
synchronized (method or block) or replaces a built-in type by the corresponding atomic data type. For example, in
version 5.0.0 CR1, the JBOSS project was using a pre-j.u.c. library called EDU.oswego.cs.dl.util.concurrent

and, in its 5.0.0 CR2 version, the project migrated to java.util.concurrent. Another interesting case is the
Grinder project, which replaced its own concurrent programming library by java.util.concurrent. This fact is
evidenced by a comment in the source code: “This package should probably be deprecated in favor of JSR 166”. In
another example of refactoring, the metric implements Runnable decreased after the refactoring in Stripper project,
replaced by the scheduler implementation with threads.

In the second group, we observed that new functionalities are playing an important role in the use of concurrent
programming constructs. For instance, in the Choco project, we observed an increase of 1,800% in the number of
synchronized methods when the project introduced a feature called geost, a generic geometrical kernel for handling
polymorphic k-dimensional objects. In a similar case, the Hippopotams project increased the use of synchronized
methods in more than 300% when it introduced a framework for building GUI for Java desktop applications. Ad-
ditionally, we observed that some major changes involved projects that were using concurrent constructs inside the
testing/sample code. These are the projects in the Testing/Sample code category. For instance, the project backport-
util-concurrent version 1.1 01, the construct extends Thread was added to test classes, increasing concurrency
behaviour.

The three aforementioned groups are not disjoint, i.e., a particular project may fit in two or more groups. For
example, we observed that the TASSEL Project fits in two categories: refactoring and new features. Its 3.0-20110324
version refactored a pipeline feature to include multi-threaded behavior and, at the same time, it introduced a new
module that used several concurrent constructs. Also, some projects do not make available information on bug reports
or release notes for some versions. When analyzing these projects, we restricted our analysis to the source code. But,
sometimes, only the source code is not enough to understand the reason behind the large change in a project. These
projects are classified as no on-line information category.

Figure 5 presents a different perspective. It compares the usage of a given metric only in projects that has more
than three versions. Then we compare the first against the last version, and the figure draws the percentage of increase
in the usage of those metrics. We did not plot all metrics beacuse we consider only metrics that have at least five
projects. We have observed most of the metrics present an increase of about 30% 40%, but some metrics have
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Table 13. Projects metrics per 100KLoC by categories (small/medium/large projects, respectively), for concurrent collections, considering only
concurrent projects.

Metrics Median Mean %Concurrent Projects
S M L ALL S M L ALL S M L ALL

# Concurrent collections 22.82 4.51 1.60 6.90 48.02 11.15 6.44 23.49 6.77 15.51 34.51 12.01
# ConcurrentSkipListMap 11.80 2.57 0.66 2.01 11.80 2.57 0.65 4.78 0.16 0.33 1.45 0.34
# ConcurrentHashMap 15.49 6.36 2.86 6.61 52.50 12.27 5.53 23.43 4.08 10 27.91 7.89
# ConcurrentMap 39.95 1.67 1.07 1.44 39.95 1.81 1.25 4.44 0.08 1.01 3.88 0.74
# LinkedBlockingQueue 17.27 3.13 1.00 3.71 26.88 4.31 2.58 12.36 3.02 6.37 15.73 5.39
# PriorityBlockingQueue 22.47 1.79 0.86 2.47 34.22 1.82 0.77 15.06 0.40 0.67 1.45 0.68
# SynchronousQueue 9.04 2.95 0.50 2.32 8.87 3.13 1.48 3.51 0.32 1.35 4.36 1.10

Table 14. The categories that we found in our manual analysis.
Category Occurrences
Refactorings 14
New Features 17
Refactoring + New Features 13
Testing/Sample code 3
Testing/Sample code + Refactorings 3
No on-line information 5

increase more, such as implements Runnable (49%) and volatile (56%). However, synchronized blocks

and synchronized methods are the ones which present the highest increase (150% and 241%, respectively). The
mean of increase was 44.36% (SD: 57%, 3rd quartile: 32.26%).
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Figure 5. The difference between metrics usage when comparing the first and the last version.

In order to try to understand which features are used inside a thread call, we have selected a sample of 100 random
concurrent projects that have their binary files available on the SourceForge page. From those, we have analyzed the
native code of the 67 concurrent projects that implement the method run, i.e., 33 randomly sampled projects do not
implement that method. To analyze what kind of code is being used inside the run methods, we used Wala8, which is
a set of Java libraries for static and dynamic program analysis for Java bytecode.

In this analysis, we selected projects that implement the Runnable interface or extends the Thread class. Also,
we selected classes which have a super class that implements the Runnable interface or extends the Thread class.

Our analysis dived into the code that is invoked by the run() method. To navigate through the method invo-
cations we have built the call graph using all public methods as entry points. We use the code snippet in Figure 1
to explain the analysis we performed. The run() method calls three other methods. The first one is a call for a

8http://wala.sourceforge.net/wiki/index.php/Main Page
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Figure 6. The top 10 most used classes

method made by the programmer methodA() and the second and third ones are calls to natives methods sleep()
and printStackTrace(). methodA() calls the native method System.out.println() and methodB(). Finally,
methodB() only calls a native method. In this scenario our analysis reached the call made in methodB, but it could
go even deeper since our analysis was developed to follow paths in the call graph of up to 10 method calls. We
have limited the traversal of the call graph to 10 levels because we are not interested devising a complete list of all
the methods called by run(). Instead, we want to obtain a rough picture of the main functionalities invoked by this
method.

Listing 1. Example of code

1 public void run () {
2 while(true) {
3 this .methodA();
4 try {
5 Thread. sleep (50) ;
6 } catch ( InterruptedException e) {
7 e. printStackTrace () ;
8 }

9 }

10 }

11 public void methodA() {
12 System.out . println (” ... ”) ;
13 this .methodB();
14 }

15 public void methodB() {
16 System.out . println (” ... ”) ;
17 }

Although all selected projects are concurrent, we found that 30 projects do not have the method run(). Project
delicious-1.14 is an example of such projects. Despite being concurrent and having a synchronized method, it does
not have a run() method. In addition, it was not possible to perform this analysis in three out of 100 projects, because
Wala was not able to build their calls graphs. We suspect Wala might have entered an infinite loop because it did not
finish building their calls graphs after several days running.

We have also organized the results in order to find which language constructs are the most intensively used inside
the run() methods. Figure 6 shows the results. To get this result we have summed all method invocations inside
the run() method. As we can see, the most intensively used class is StringBuffer and its most intensively used
method is append(), which represents 30% of all invocations to StringBuffer methods.

The high number of StringBuffer method invocations suggests that developers might be aware that instances of
StringBuilder are not safe when used in multiple threads. According to Java official documentation9, if synchro-
nization is required then StringBuffer, should be used instead.

Figure 7 shows the top 10 most intensively used methods overall. Nine out of the top ten classes are related to

9http://docs.oracle.com/javase/7/docs/api/java/lang/StringBuilder.html
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Table 15. Top 10 most used classes / interfaces and the number of time of their most used methods.
Rank Class / Interface Method Occurrences
1st java.lang.StringBuffer append 797697
2nd java.util.Map get 502395
3rd java.lang.String length 79509
4th java.lang.StringBuilder append 180129
5th java.lang.Character isDigit 26945
6th java.util.ArrayList add 44390
7th java.lang.Math max 79325
8th java.lang.Object getClass 39967
9th java.util.Iterator hasNext 60404
10th java.lang.System arraycopy 57712

Figure 7. The top 10 most used methods over all

string processing, and eight are StringBuffer methods, which further suggests that developers are aware about the
synchronization.

We also investigated the usage of the java.util.concurrent package. All java.util.concurrent classes
and interfaces that were used in the analyzed projects as well as the most intensively used method of each class or
interface are presented in Table 16. The top 10 most intensively used methods of the java.util.concurrent library
are presented in Figure 8. The most intensively used methods are unlock() and lock() from the ReentrantLock

class.

Table 16. All j.u.c. classes / interfaces used in analyzed projects ordered by usage and their most used methods.
Class / Interface Occurrence Method Occurrence
j.u.c.locks.ReentrantLock 1491 unlock 1035
j.u.c.locks.AbstractQueuedSynchronizer 192 tryRelease / unparkSuccessor 71
j.u.c.atomic.AtomicInteger 173 get 83
j.u.c.atomic.AtomicReference 111 get 98
j.u.c.atomic.AtomicBoolean 72 compareAndSet 50
j.u.c.CopyOnWriteArrayList 50 size . interator 24
j.u.c.Semaphore 14 release 10
j.u.c.atomic.AtomicLong 6 set 6
j.u.c.ExecutorService 5 submit 2
j.u.c.locks.Lock 5 unlock 4
j.u.c.ScheduledThreadPoolExecutor 3 triggerTime / decorateTask / delayedExecute 1
j.u.c.LinkedBlockingQueue 3 take 2
j.u.c.Executor 2 execute 2
j.u.c.Executors 2 newFixedThreadPool / newSingleThreadExecutor 1
j.u.c.Future 2 get 2

Since both java.lang and java.util packages provide basic, well-known functionality, it is expected that such
libraries would be among the most intensively used ones in our population of Java projects. In order to provide a
different perspective, we also collected information about the most intensively used classes and methods that are from
neither the java.lang nor the java.util packages. The results are presented in Tables 18 and 19. The former
presents the most intensively used classes and the most intensively used method of each of these classes. The latter
presents the most intensively used methods, without accounting for the classes from which they come.

We found that, when neither java.lang nor java.util are taken into account, the most intensively used classes
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Figure 8. The top 10 most used j.u.c. methods

Table 17. The number of occurrence of HashMap and Hashtable and their most used methods
Hash Occurrence Method Occurrence
HashMap 64440 clone 21040
Hashtable 7587 get 4021

are all related to either I/O operations or the GUI. For instance, PrintStream from the java.io package, is the most
intensively used one. Among the GUI elements, the java.awt.Component class is the most intensively used. This
is the parent class of every UI component in Java’s AWT. In summary, concurrency is employed mainly to perform
IO and GUI operations and initiatives to make usage of concurrency seamless in these scenarios have direct practical
applications and a high probability of adoption, for example, we have noticed that developers have used threads to
make faster the tasks of drawing components on the screen.

5.3. RQ3: How do developers protect shared variables from concurrent threads?

Most developers use synchronized blocks and methods to protect shared variables. The volatile modifier,
explicit locks (including variations such as read-write locks), and atomic variables are less common. This is confirmed
by the survey results: 57% of the respondents believe that the synchronized blocks and methods are the most
frequently used concurrent programming construct, in comparison to the volatile modifier (only 1% of them) and
explicit locks (less than 1% of them).

All concurrent projects we have analyzed include uses of synchronized, either as a method modifier or a block.
This means that all the projects that use java.util.concurrent also use synchronized. The synchronized

blocks are present in 53.56%, 83.38%, and 93.68% of concurrent small, medium, and large projects, respectively. The
corresponding percentages for synchronized methods are 70.98%, 92.37%, and 97.57%, respectively.

Table 20 present correlations between deltas for some of the metrics we have collected. The correlations involving
synchronized methods per 100KLoC are negative and non-negligible, except for occurrences of synchronized
blocks. At the same time, the deltas for the latter correlate positively with the deltas for constructs whose usage
has been growing in the last few years: atomic data types (a strong positive correlation of 0.5528598) and explicit
locks (a moderate positive correlation of 0.4728947). We hypothesize that this trend stems from the need to improve
performance of applications in multicore computers. In several situations, synchronizing an entire method could be
considered a mistake. This is so because, when one synchronizes an entire method, code regions that often do not need
to be synchronized are also locked. A synchronized block can be used instead to implement finer-grained locking.
One of the anonymous respondents has described that s/he had improved the performance of the application just by
“removing synchronized bottlenecks with lock free code or finer-granularity locking”. The synchronized keyword
is favored by developers for mutual exclusion. It can also be noted that synchronized methods are employed more
intensively than synchronized blocks. In Figure 10, we take the size group out of consideration, like we did in
Figure 3.

Another interesting point in Figure 9 pertains to the volatile keyword. Notice that projects have employed it in-
tensively, though nowhere near the pervasiveness of synchronized blocks and methods. Nonetheless, on average, the
use of volatile variables has not changed significantly throughout the years. Even though volatile variables can
be read and written atomically, with better performance than regular variables accessed by means of synchronized

19



/ Procedia Computer Science 00 (2015) 1–33 20

Table 18. Top 10 most used classes / interfaces and the number of occurrences of their most intensively used methods. The java.util and
java.lang packages were excluded from this list

Rank Class / Interface Method Occurrences
1 java.io.PrintStream println 41801
2 java.io.PrintWriter flush 11566
3 java.io.File exists 6421
4 java.io.Writer write 8779
5 java.awt.Component setEnabled 6625
6 java.awt.geom.Dimension2D getWidth / getHeight 3332
7 java.io.StringWriter toString 5533
8 java.awt.MenuItem setEnabled 2650
9 java.io.IOException getMessage 3107
10 java.io.InputStream read 2157

Table 19. Top 10 most intensively used methods overall. Methods from the java.util and java.lang packages were excluded from this list.
Method Occurrence
java.io.PrintStream println 41801
java.io.PrintStream flush 32096
java.io.PrintWriter flush 11566
java.io.PrintWriter print 10523
java.io.Writer write 8779
java.awt.Component setEnabled 6625
java.io.File exists 6421
java.io.StringWriter toString 5533
java.io.File isDirectory 3582
java.awt.PopupMenu getItem 3475

blocks and methods or atomic variables and also require less coding effort, the volatile modifier cannot be used to
solve the problem of achieving mutual exclusion and, therefore, has more limited applicability. In fact, we found a
weak positive correlation (0.2765276) between the deltas for volatile variables and synchronized blocks.

The java.util.concurrent library also provides constructs to protect shared data, such as atomic variables and
the Lock interface. In Figure 10, Atomic Variables refer to classes of the java.util.concurrent.atomic package,
such as AtomicBoolean, AtomicInteger, and AtomicLong. Although the numbers pertaining to the use of atomic
variables do not seem to be large (Figure 9), a single occurrence of an AtomicInteger can replace many uses of
synchronized blocks or methods. Atomic variables can be employed as a replacement for synchronized blocks
and methods in a number of situations, while providing a non-blocking solution that completely avoids deadlocks.
Nonetheless, it was possible to identify a moderate/strong positive correlation (0.5528598) between the deltas for
synchronized blocks and atomic variables, as presented in Table 20. As for synchronized methods, there was no
correlation. These results indicate that atomic variables are not replacing synchronized methods or synchronized
blocks in applications. Instead, they suggest that atomic variables are more of a complement than a replacement
for synchronized methods or synchronized blocks. In addition, we found a weak/moderate positive correlation
(0.3631938) between the deltas for volatile and atomic variables. They exhibit similar properties; atomic classes
have get and set methods that work like reads and writes on volatile variables.

One possible reason for the weak adoption of atomic variables is the fact that they have limitations, when compared
to synchronized blocks and methods. The former are easier to use in situations where they are applicable, but they
are also less general. Firstly because they only cover integers, booleans, and arrays of these types. Additionally, if
two or more shared variables must be accessed by multiple threads, atomic variables cannot be used, except as lock
replacements that require fairly complex non-blocking algorithms [16].

In some projects, explicit locks, in general, and the ReentrantLock class, in particular, seem to be replacing uses
of synchronized methods. However it was not possible to find a correlation between the deltas for synchronized
methods and uses of the java.util.concurrent.locks package, nor between synchronized methods and uses
of the ReentrantLock class. It was possible to identify a moderate positive correlation (0.4728947) between the
deltas for synchronized blocks and the ReentrantLock class and a week positive correlation (0.154635) between
the deltas for synchronized blocks and the uses of the java.util.concurrent.locks package. These results
indicate that explicit locks, as atomic variables, are more of a complement than a replacement for synchronized
methods and synchronized blocks – they are more flexible (tryLock, non-scoped, multiple conditions). If we con-
sider the overall number of concurrent projects, less than 9% employ atomic variables and 9.53% use the Locks from
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Figure 9. A temporal perspective of the most common synchronization mechanisms. Both groups contains only the most recent version in each
time frame.

Table 20. Pearson correlation between synchronization types
Metrics Projects Correlation mean deltas
Atomic variables + Concurrent collections 99 0.3786147 3.493009 x 5.320464
ReentrantLock + sync methods 78 -0.001103894 -0.4336 x 7.5729
ReentrantLock + sync blocks 78 0.4728947 -0.3693 x -21.75982
sync blocks + Atomic variables 128 0.5528598 -7.724 x 3.633
sync methods + Atomic variables 122 0.02918461 7.9887 x 4.493
sync blocks + java.util.concurrent 295 0.2477545 -9.5175 x 5.3835
sync methods + java.util.concurrent 295 0.01489112 -13.1194 x 7.4551
sync blocks + juc.Locks 131 0.154635 -27.9565 x 3.217
sync methods + Juc.Locks 132 -0.0478107 -0.1152 x 2.889
sync methods + sync blocks 751 0.1499019 -21.47 x -4.217
volatile + sync blocks 308 0.2765276 4.3353 x -6.214
volatile + java.util.concurrent 185 0.08287506 11.4736 x 8.914
volatile + Atomic variables 101 0.3631938 6.2826 x 6.562

java.util.concurrent library.

5.4. RQ4: Do developers still use the java.lang.Thread class to create and manage threads?

We found out that developers are still using java.lang.Thread intensively. At the same time, they are also
making more use of the high-level library to create and manage threads. Figure 11 gives a temporal perspective of the
most often used constructs for thread management. Apparently, classes that directly extend the Thread class seem to
be losing some space to the combination of executors and classes that implement the Runnable interface. Moreover,
the use of the Runnable interface has increased over time, albeit slightly, and implementing it remains the standard
way of defining new thread classes. However, as we can see in the bars for 2011, some projects use Thread more
extensively than Runnable. In 2011 we found two projects that use Thread at least three times more than the mean
(43.46 uses). They are rssamantha (148.50 uses) and jnrpe (204.22 uses). Without these two projects, the mean values
for Thread would be roughly similar to the mean values for Runnable construct.

Figure 11 shows that Executors have been used more intensively in the last few years and Figure 12 presents
its usage year by year. Nevertheless, we have examined several constructs of the executors family and still only a
minority of the projects use them. Executors are used mainly by means of the java.util.concurrent.Executors
class, which is a factory that provides the fundamental mechanisms to spawn threads whose lifecycle is managed
by executors. However, this class is used in slightly more than 9% of all the concurrent projects (156 concurrent
projects). Only a small number of projects directly employ the Executor and ExecutorService interfaces (32 and 9
concurrent projects, respectively). Callable, which is a useful interface, similar to Runnable, except for the fact that
it represents computations that can produce a value as their result, has appeared in 68 concurrent projects, i.e. 3,9% of
all concurrent projects. Although programmers can use Callable for non-concurrent purposes, it is closely associated
with the use of executors, as suggested by Table 21. Furthermore, futures, a well-known mechanism for concurrent
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Figure 10. The mean # of uses of the most common synchronization mechanisms per 100KLoC in projects released between 2005 and 2012. Only
the most recent version of each project was taken into consideration.

Table 21. Pearson correlation between Thread and Executors.
Metrics Projects Correlation mean deltas
extends Thread + Executor constructs 112 -0.137388 -3.3756 x -2.922
implements Runnable + Executor constructs 145 0.01767673 -3.779 x -0.02007

execution, are not used frequently. They are employed in only 1.27% of the concurrent projects. In constrast, 10% of
the survey respondents believe that futures are the most often used construct of the java.util.concurrent library.

Table 21 shows a weak negative correlation between the deltas for extends Thread and Executors construct
(-0.137388). This negative correlation might suggest that developers are moving from manually managing thread
execution to employing the thread management policies that executors implement. This seems resonates with the
intuition of developers – more than 30% of them believe executors or related types, such as Future, to be the most
frequently used constructs of the java.util.concurrent library. Developers may have a great advantage when
using executors. First, because they are easy to use. Second, because they provide various classes supporting advanced
strategies to manage thread lifecycle, such as scheduled execution and thread pools. Finally, because they can improve
performance by avoiding unnecessary thread creation. We have found five anonymous respondents who commented
that they have used Executors to improve application performance. One of them has stated the following: “Add
concurrency in certain areas, improve concurrency control using executors instead of manually starting threads,
make better use of multiple CPU cores, etc”.

5.5. RQ5: Are developers using thread-safe data structures?

Developers are still intensively using the older associative collections of the Java language, such as Hashtable and
HashMap. Some factors make them unsuitable for highly concurrent applications [10]. Hashtable, albeit thread-safe,
uses only a global lock in their methods, which makes it unscalable. HashMap, on the other hand, is not thread-safe.

We have examined several families of concurrent collections and most of them appear in few applications. The
ConcurrentHashMap and LinkedBlockingQueue are the only collections which present some significant use.
They appear in 65.87% and 45.02% of the projects that employ concurrent collections, respectively, representing
7.98% and 5.45% of all concurrent projects, respectively. Moreover, 21% of the survey respondents agreed that
ConcurrentHashMap is one of the most frequently used concurrent programming constructs of the Java language
and 60.36% of them have used it in a Java project. In fact, they also believed that ConcurrentMap was frequently
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Figure 11. A temporal perspective of the most often used constructs for creating and managing threads. Both groups contains only the most recent
version in each time frame.

Table 22. Pearson correlation between Collections and Concurrent Collections.
Metrics Projects Correlation mean deltas

HashMap + ConcurrentHashMap 118 -0.4655915 9.313 x 6.4312
Hashtable + ConcurrentHashMap 78 -0.01810971 -14.03834 x 4.460697
Hashtable + HashMap 574 -0.1699068 -11.3671 x 10.169

used. Nevertheless, since ConcurrentMap is an interface, it could be used frequently, albeit indirectly. One of
the anonymous respondents have said that the use of ConcurrentHashMap has helped him to improve the appli-
cation performance: “java.util.HashMap is not thread-safe. And what’s more worse [sic], it might end-up in an
infinite loop. We usually simply replace it with a ConcurrentHashMap”. Moreover, only one respondent mentioned
ConcurrentSkipListMap and another one has employed PriorityBlockingQueue. No respondent has mentioned
any of the following collections: LinkedBlockingQueue, LinkedBlockingDeque, LinkedTransferQueue and
ConcurrentNabigableMap. In our study, we found out that LinkedBlockingQueue is employed by 4.22% of the
analyzed projects.

Figure 13 presents the mean number of uses per 100KLoC of some concurrent and non-concurrent collections. It
shows that HashMap is used much more intensively than the other collections. HashMap is used six times more fre-
quently than Hashtable by small projects, and more than four times more frequently by large projects. In addition, its
usage has been steadily intensive throughout the years. In Figure 13 it is also possible to notice that Hashtable usage
has been decreasing steadily and the numbers of uses of both Hashmap and ConcurrentHashMap have been increas-
ing over time. However, if we look at the most recent versions of projects released each year (Figure 14), we notice that
the use of these constructs did not change much throughout the years. One exception is PriorityBlockingQueue.
We observed a greate increase in the usage of this metric in 2010. Nonetheless, analyzing the data, we observed that
only two projects were using this construct in 2010, one with 2.55 uses, and another one with 89.52 uses.

We have found a moderate negative correlation between the deltas for HashMap and ConcurrentHashMap (-
0.4655915). Although we had analyzed 118 projects, this result seems to be biased by an outlier (the jade4spring
project), which uses ConcurrentHashMap intensively and four times more than HashMap. Without this unique
project, the result of the Pearson correlation would be much weaker (0.01158263). We also identified a negative
correlation between the deltas for Hashtable and HashMap (-0.1699068). Considering the lack of scalability and bad
performance of Hashtable, this result suggests that developers are wasting opportunities to improve the performance
of their applications.

5.6. RQ6: How often do developers employ condition-based synchronization?

A large number of concurrent projects include invocations of notify(), notifyAll(), or wait(). The last
one is the most popular among them, appearing in 705 projects (40% of the concurrent projects). Table 23 shows
a moderate (0.6351526) and strong (0.97487) positive correlation between the deltas for the wait() and notify()

methods and between wait() and notifyAll() respectively.
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Figure 12. The mean # of uses of the most common mechanisms to create threads per 100KLoC in projects released between 2005 and 2012. Only
the most recent versions of the projects were taken into consideration.

The j.u.c library provides high-level constructs for condition-based synchronization, such as CyclicBarrier,
CountDownLatch, and the BlockingQueue interface and its implementations, e.g., LinkedBlockingQueue. Except
for the latter, developers rarely employ these constructs. This data is confirmed by our survey: less than 1% of the
respondents believe these constructs are frequently used. Nevertheless, the few projects that do use CountDownLatch
seem to be using it to replace uses of wait() and notify(). We have noticed this upon manual examination of the
projects. The correlations in Table 23 do not emphasize this because the number of projects is small. The correlations
involving deltas for CoundDownLatch use too few samples to be relevant.

Classes such as Condition and CyclicBarrier are also rarely used: only 1.2% of the concurrent projects em-
ploy CyclicBarrier as we can see in Figures 16 and 15. In 2007, an outlier project called backport-util-concurrent-
Java (100+ uses per 100KLoC) significantly impacted the CyclicBarrier data. We have calculated correlations
using the delta for these constructs. However, we have not taken them into consideration due the low number of
projects that use them. Table 23 presents the most interesting correlations.
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Figure 13. A temporal perspective of the most used collections. Both groups contains only the most recent version in each time frame.
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Figure 14. The mean # of uses of the most common concurrent collections per 100KLoC in projects released between 2005 and 2012. Only the
most recent version of these projects were taken into consideration.

Table 23. Pearson correlation between condition based synchronization.
Metrics Projects Correlation mean deltas

wait() + CountDownLatch 38 0.04138129 -5.1346 x 5.303660
notifyAll() + CountDownLatch 35 0.08461613 -1.1426 x 5.664033
wait() + notifyAll() 361 0.97487 3.0509 x 9.31662
wait() + notify() 333 0.6351526 -6.7499 x -5.7836
notify() + notifyAll() 201 -0.07556611 -8.5184 x -1.261

5.7. RQ7: Do developers attempt to capture exceptions that might cause abrupt thread failure?
Developers do not attempt to capture exceptions about errors that might cause threads to end abruptly, at least that

is what we conclude from our data. To gather this information, we have checked if there were project versions that
implemented the Thread.UncaughtExceptionHandler interface. Implementations of this interface define handlers
for uncaught exceptions thrown within a thread.

Furthermore, we have also looked for invocations of the methods that associate these methods with a thread:
setUncaughtExceptionHandler and setDefaultUncaughtExceptionHandler from Thread class. Less than
3% of the concurrent projects implement the Thread.UncaughtExceptionHandler interface.

In addition, we would like to know if developers are worried about abnormal thread death as a consequence
of uncaught exceptions. When a single threaded console application terminates due to an uncaught exception, the
program stops running and produces a stack trace that is different from typical program outputs. On the other hand,
the death of the thread might have non-obvious consequences. Moreover, when threads have dependencies where one
thread can only proceed when another one performs a certain action, the death of a thread causes the application to
hang. Catching exceptions that threads throw is not only important because it can avoid these problems, but it is also
encouraged by the Java official documentation10. In all these cases, if no handler catches the exception that caused the
thread to die, finding the causes of the problem may be hard.

We observed that only a small amount of concurrent projects (46 projects), which represents 2.6% of the con-
current projects, implemented the Thread.UncaughtExceptionHandler interface once and only 0.22% of them (4
projects) implemented this interface four times, which is the highest number of implementations per project version.
However, most of the handlers go against the official Java recommendation. We observed that most of the uses simply

10http://docs.oracle.com/javase/7/docs/api/java/lang/ThreadDeath.html
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Figure 16. mean # of uses of most common condition-based synchronization mechanisms per 100KLoC in projects released between 2005 and
2012. Only the most recent version of these projects were taken into consideration.

print a stacktrace or an error message. We also observed some naive implementations. For instance, a developer who
implements this interface, but leaves the uncaughtException method empty, wasting the opportunity to treat the ab-
normal behaviour and to properly notify their clients. Also, comments in the code suggest the developers are worried
about these exceptions but have no idea about what to do with them. Yet, no survey respondent have mentioned the
use of this interface.

6. Threats to Validity

In a study such as this, there are always many limitations and threats to validity. First, to download the source
code of the projects, we assumed that the source files were packaged in a file with the keywords “src” or “source”
in its name. This is common practice in open source repositories. Nonetheless, it is not a rule and some projects are
bound to adopt different naming conventions. We have ignored such projects. Moreover, obtaining the release date of
some project versions was not possible. In some cases, only the latest versions were dated, so some undated versions
were ignored in order to collect data regarding temporal analysis. Furthermore, we assumed that most projects would
contain either versions or subprojects in each directory. However, a small number of projects contain both in the same
directory. It is difficult to infer this automatically if no conventions are followed or if the conventions are unknown.
Hence, it is possible that some of the subprojects were analyzed as versions of the main project and that some versions
were analyzed as subprojects. To minimize this problem, we manually examined the directory structure of projects
that have multiple versions and projects that include subprojects. It is important to emphasize that previous studies
with similar scope [6] did not address this issue and, as a consequence, may exhibit similar or higher bias.
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Table 24. The total of the false positive metrics.
Metric Projects % of false positives

java.lang.Thread 12 1,38%
java.lang.Runnable 19 1,86%
Executor Classes 2 1,05%
Atomic Variables 0 0%
Concurrent Collections 0 0%

Accuracy of measurement represents another threat to validity. Due to the large number of complex projects, it is
impossible to automatically resolve all the dependencies on external libraries. Thus, we must rely on purely syntactic
analysis. This is sufficient to precisely measure occurrences of synchronized and uses of monitor-based synchro-
nization. However, to accurately collect some of the metrics, type information is necessary. Moveover, in cases where
a class extends another class that extends Thread or implements Runnable, our infrastructure only counts the met-
ric “extends Thread” or “implements Runnable” once, without looking at subclasses of the extending/implementing
classes.

To verify whether the measurement error is significant, we have adopted the following procedure: we looked for
class names that are common in the java.util.concurrent package, such as ConcurrentHashMap, Executors
and AtomicIntegers, and for classes that extend Thread or implement Runnable which are using a fully-qualified
name that does not refer to the java.lang package. This would indicate that the programmers are explicitly using
their own Thread implementations, which are strong false positive candidates. We then proceeded to manually
analyze all the candidate files to check whether they represented actual false positives. In general, measurement error
was low, as presented in Table 24.

The calculation of the correlations to better understand the evolution of the projects was affected by the low
number of project versions. Approximately 1/3 of the concurrent projects have only one version. This is a problem
because at least two project versions are required to calculate correlations. This restriction greatly reduced the number
of projects available for analysis. The small number of projects that employ the j.u.c. library further aggravated the
problem. However, the chosen approach has produced results that we believe are more reliable than might have been
achieved if we had adopted a more liberal approach.

In spite of the size of this study, it could also be argued that its results only apply to a very specific population:
that of Java open source projects hosted by SourceForge. It does not cover other popular programming languages,
such as C and C++, and does not study other source code repositories, e.g., Github and Google Code. Furthermore,
it does not analyze proprietary software systems, whose source code is not available. However, even though the
results of this work might not be generalizable, we believe that the focus on the Java language is not a problem to
an experienced programmer, since it is one of the most popular programming languages according to a number of
different sources and considering different measures of popularity [17, 18, 19, 20]. Moreover, SourceForge hosts an
enormous number of projects [21], including large-scale, well-known, active ones, such as the Liferay Portal, jEdit,
and the JBoss application server. Hence, it is representative of the current practice of open source Java software
development. As for proprietary applications, they are outside the scope of this study.

Another limitation is that the Java programming language has a number of external libraries, and several of them
are related to concurrent/parallel programming [22, 23]. In fact, the java.util.concurrent package was an exter-
nal library for a long time, until the Java Community Process11 included it in version 1.5 of the language. Understand-
ing the use of these third-party libraries is outside the scope of this study. We also do not analyze the use of constructs
added in version 1.7 of the language, which include all classes related to the Fork/Join framework, new concurrent
collections (ConcurrentSkipListMap and ConcurrentSkipListSet), and a few other classes.

Using the first and the last version of each project, we can employ statistical correlation to understand the evolution
in the use of java.util.concurrent. We have also tried to analyze short periodic snapshots (quarterly, semesterly,
or even yearly). Nevertheless, several issues have hindered this analysis and no interesting finding was produced.
Firstly, about 70% of the concurrent projects do not have more than three versions released between 2005 and 2012.
Thus, to proceed with the analysis considering shorter periodic snapshots, but with a small number of versions released
to fill in these snapshots, would produce meaningless data. Moreover, if we restricted the study to projects with more

11http://www.jcp.org/
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than three releases, it would not be useful to a large study like this one, because it would drastically reduce our
population of software systems.

Additionally, we have tried to analyze the snapshots from the source code repository of each project, instead of
the releases, since they are much more frequent. However, conducting that kind of study using the SourceForge
population is infeasible. Projects in SourceForge employ different source control systems, hosted in different places,
and without following any standard. We found cases where the source code under development was hosted in one
repository (sometimes a private repository), but the releases were available at SourceForge. Even worse, there were
some projects that did not have the default repository URL.Hence, obtaining the source code snapshots for all the
projects requires obtaining the URLs for the repositories one by one, fetching the snapshots, which may require
the use of multiple version control systems (for example, Mercurial, Git and SVN, to name a few), and manually
organizing these snapshots, since there is no standard organization. The impossibility of quickly analyzing a large
number of projects under these circumstances is what motivated us to focus on releases in the first place, because
SourceForge makes them available through a standard Web interface that can be crawled. However, releases are much
less frequent than repository snapshots, which highlights the difficulty of performing this fine-grained analysis.

Another issue is related to the code organization inside the repository. Most of the code is not standardized, i.e.,
some projects have several directories on the root dir, and the released code could be in any one of them. We also
found testing and documentation code in the same folder as the core business code. In addition, we have found a mix
of projects inside the same repository. For example, a project had several child projects and these projects were all on
the same directory. In summary, it is not possible to automatically understand and extract the code related to the core
business of these projects. On the other hand, project releases usually only contain the code related to the core of the
project.

Finally, this paper does not address the problem of understanding whether these constructs are used correctly
or appropriately. It is well-known that programmers often misuse concurrent programming constructs, which may
result in bugs or deterioration in the application’s performance. e.g., code runs sequentially instead of concurrently.
Nevertheless, this work does not perform any static or runtime analysis nor similar techniques in order to investigate
concurrent programming errors such as deadlocks or race conditions. Analyzing these characteristics of a program is
a computationally intensive task that is still difficult to perform on such a large scale.

7. Study Implications

This research has implications for different kinds of stakeholders. Five of these possible groups are discussed
below.

Developers: Developers are now facing the problem of developing concurrent applications with more frequency,
while keeping cost as low as possible and quality as high as possible. The results of our study provide some assistance
to these developers. First, by showing that concurrent programming is already in widespread use and that they cannot
ignore it (RQ1). Second, by indicating that there are many opportunities to make applications capable of benefitting
from multicore machines (RQ1, RQ2, RQ3, RQ4, RQ6). Uses of synchronized can often be replaced by more effi-
cient and more flexible solutions, better suited for parallel execution [3, 5, 4]. Third, by suggesting, based on actual
adoption, alternatives to Java’s basic concurrent programming constructs and data structures in some common situa-
tions (RQ3, RQ4, RQ5). Fourth, by showing that some developers are already switching from lower level constructs
to the ones available in the java.util.concurrent library (RQ2, RQ3, RQ6), at least in some projects. Finally,
by raising awareness about uncaught exceptions in threads and the fact that most applications are vulnerable to them
(RQ7).

API Designers: Our results (RQ2, RQ3, RQ5, RQ6) suggest that simple, general-purpose mechanisms that can be
employed in many situations seem to be preferred by programmers. API designers should consider this carefully
when devising new libraries. LinkedBlockingQueue is one of the most widely used concurrent collections and, not
coincidentally, it makes it trivial to solve producer-consumer-like problems. Analogously, CountDownLatch can be
used to replace wait/notify (and notifyAll) pairs with a simpler solution in most situations. Atomic variables
may seem restrictive at first, since the java.util.concurrent library only supports thread-safe versions of three
primitive types: int, long, and boolean. However, as reported elsewhere [24], these are the types of more than 30%
of all the fields appearing in Java programs. Also, protected regions involving access to a single shared variable are
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in widespread use [25]. Hence, their applicability is wide. In addition, they are easy to use and simplify reasoning
about program behavior [16]. On the other hand, explicit Locks are known to be more difficult to use than monitors,
though more flexible [7]. Murphy-Hill et al. [26] had tried to predict some innovations in programming languages.
They believe that programming languages have had influence over IDE features and vice-versa. They also believe that
sites like GitHub and StackOverflow can influence the way programmers program. They think that studies like ours
can influence programming language designers how to improve programming languages.

Researchers: Researchers can also benefit from our results. First, to the best of our knowledge, this is the first report
on the current state of the practice of the usage of concurrent programming constructs in Java. Second, because it
hints (RQ1-6) that general purpose solutions being devised by researchers [9, 8] help developers to build parallel
applications have some potential for adoption. Third, it suggests there is much room for improving the ways in which
exceptions in threads are addressed (RQ7), and that existing proposals [27] are not mere academic exercises, as it
indicates that guidance on how to deal with exceptions is necessary. This can be a starting point for new empirical
studies and for the design of new mechanisms for handling exceptions in multithreaded systems.

Tool Vendors: Vendors can evolve their tools to improve support for code refactorings. Since concurrent program-
ming often leverages low-level constructs, and the most popular high-level concurrent library is still not in widespread
use but has clear benefits, vendors might be willing to develop intelligent tools that would suggest which constructs
developers should use in particular contexts, and would also perform code transformations to introduce these con-
structs. Our results also suggest (RQ4, RQ5, RQ6) that developers are willing use high-level constructs provided that
they are easy to use.

Lecturers in Concurrent Programming: Based on the results of this study, lecturers can provide students with
information about the most widely used concurrent programming constructs in the Java language. Moreover, they
can use these results to tailor the subjects they teach, for example, discussing why some concurrent programming
constructs are not used in practice (RQ1) or to better highlight the advantages of these constructs, so that they become
more widespread.

8. Related Work

This section discusses related research.

Studies on Large Software Populations of Java Software. The first study that we know of to conduct an in-depth
study of the structure of Java programs was made by Baxter et al. [28]. In their work they examined 56 open source
projects. Many of the applications were chosen because they have been used in other studies [29, 30, 31]. Other
applications were added because they were popular, i.e. frequently downloaded and actively developed open-source
Java applications from various websites. They did not describe how these projects have been downloaded, whether
automatically or manually. Nevertheless, due to the low number of projects, it would be straightforward to manually
download them. The analysis was made from the bytecode generated by the Java compiler. This study did not analyze
the usage of concurrent programming constructs. Collberg et al. [24] also analyzed Java bytecode, but in a population
of hundreds of Java applications. They discovered, for example, that int is the type of approximately 25% of all the
variables in Java programs.

Grechanik et al. [6] collected and analyzed data at the source code level of open source projects in large reposito-
ries. They described an infrastructure for conducting empirical research in source code artifacts and obtained insights
into over 2,080 Java applications. While they randomly chose those java applications to study, we focus on mature,
stable, and recently updated Java projects.

More recently, Meyerovich et al. [32] analyzed programming language adoption through the lenses of several
characteristics, including large-scale statistics and programmer decisions. Some of their findings include: (i) popular
languages are consistently popular across domains of use, and less-popular languages tend to have specic domains;
and (ii) developers consider ease of use and exibility to be more important than correctness. Similarly, McDonnell
et al. [33] studied the impact of API evolution on software ecosystems. They conducted an investigation on a set of
Android APIs and applications using data from Github. They observed that Android API is evolving at a mean rate
of 115 API updates per month. On the other hand, client adoption is not catching up with the pace of the evolution –
about 28% of API references in client application are outdated.
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None of the aforementioned papers analyzes the usage of concurrent programming constructs, focusing instead
on different characteristics of Java programs. Therefore, we could say the results presented in this paper complement
their results.

Studies Targeting Concurrent Software. Lu et al. [34] analyzed 105 randomly selected real-world concurrency
bugs. In particular, they found out that 73% of the non-deadlock concurrency bugs were not fixed by a simple fix
strategy or were incorrectly fixed. Li et al. [27] studied bug characteristics in open source software, including concur-
rency bugs. One of their findings is that, although concurrency bugs represent a small portion of bug reports, 55.5%
of them cause hangs or crashes, which means they can cause more severe impact on systems than non-concurrency
bugs.

These previous studies complement ours because they have examined the documentation of the processes that de-
velopers follow to build concurrent systems. On the other hand, our study investigates the products of these processes,
the actual concurrent systems. This approach makes it harder to understand some phenomena, such as bugs and their
manifestation, but makes it possible to analyze other features, such as the usage of language constructs and how it has
evolved over time. In addition, we can work at a much larger scale, because we analyze artifacts that were written in
a programming language.

Dig et al. [35] analyzed five open-source projects in order to find, among other things, the most common transfor-
mations to retrofit concurrency into sequential programs, and whether these transformations are random or belong to
certain categories. They analyzed qualitatively and quantitatively the concurrency-related transformations. Some of
their findings are that, in 73.9% of the cases, concurrency was successfully retrofitted in existing program elements;
in 5.4% of the cases, concurrency was modified in existing elements; and, in 20.5% of the cases, it was designed into
new program elements. Their findings suggest that programmers follow an orderly process where they focus on well
defined objectives: to improve responsiveness, throughput, or scalability, or to fix concurrency errors. This Study
complements ours because they studied the process of transforming sequential code for parallelism. However, we
analyzed concurrent projects in order to find which concurrent constructors were used.

More recently, Sadowski and colleagues [36] examined the evolution of data races by analyzing samples of the
committed code in two open source projects over a multi-year period. They identified how the data races in these
programs change over time. To gather data from the source code, they performed dynamic analysis, which has no
false positives, and so gives a lower bound to the number of races that exist at a particular revision. This study
complements ours by focusing on bugs in concurrent and parallel programs at the source code level. However, due to
the cost of the analysis that was performed, it examines a small number of systems.

Lin et al. [37] had analyzed 104 open-source Android applications in order to understand how AsyncTask (a
high-level concurrent construct) is used by programmers, if it is misused and underused. The authors also presented
Asynchronizer, a refactor tool to extract sequential code into concurrent one using AsyncTask.

Lin et al. [38] presented an empirical study of Check-Then-Act idioms used in java.util.concurrent col-
lections. Even though the individual operations of these collections are thread-safe, when operations are combined
(e.g. first checks if the queue is empty and, if not, removes elements from it), it could lead to concurrency bugs
when executed under multiple threads. Differently from our study, the authors analyzed only a curate sample of
28 widely-used open source Java projects that made use Java concurrency collections, and cataloged 9 commonly
misused Check-Then-Act. Also, the authors did not analyze the usage of different concurrent collections.

Marinescu [39] also analyzed SourceForge, but she focus on MPI (Message Passing Interface), a concurrent
programming construct used in the C programming language. One of the main different between her work and ours
is that she have performed, an investigation regarding the complexity based on the LOC (lines of code) and CYCLO
(cyclomatic complexity) of the methods of MPI based applications .

To the best of our knowledge, the study that is closest in nature to ours is the one conducted by Okur and Dig [11].
Their study worked on a smaller scale (655 projects) and their focus was on open-source applications that use Mi-
crosoft’s new parallel libraries - Task Parallel Library (TPL) and Parallel Language Integrated Query (PLINQ). Both
the characteristics of these libraries and practices of the developer community make it difficult to directly compare the
results of these studies. With the assistance of VisualStudio, they resolved all project dependencies and, as a conse-
quence, avoided measurement errors. However, as discussed in Section 6, measurement error was small in our study.
On the other hand, their temporal analysis only covers two years of development, and they did not look for statistical
correlations in their results. Also, the research questions the two studies attempt to answer are different, with few
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exceptions (RQ1 and RQ3 in our study). In particular, our RQ3 was inspired by their RQ4. However, the results
reported in the two papers greatly differ in terms of both their nature and the depth with which they were studied.

Okur and collegues [40] studied how windows phone applications (WP) are using asynchronous programming. In
this study, they analyzed over 1,300 WP apps, and observed that developers are (i) missing opportunities to use this
framework and (ii) they are misusing the constructs, creating problems that might hurt performance and introduce
deadlocks. Based on these facts, they proposed two refactoring tools able to (i) convert callback-based asynchronous
code to use the asynchronous framework and (i) to find and correct common misues. More recently, Okur et al. [41]
had downloaded 880 open-source concurrent C# applications from Github in order to understand, among others things,
the level of parallel abstractions developers used, i.e. if they used high-level abstractions instead of low-level ones.
They also presented two refactoring tools which could help developers to migrate from low-level parallel abstractions
to higher-level abstractions.

In a preliminary paper [42], we have reported a few of the results that we discuss in this work, most of them related
to RQ1. This previous paper did not attempt to analyze larger trends in the usage of concurrent programming con-
structs, such as whether projects that have more recent releases are more likely to use the java.util.concurrent

library. Moreover, the evolution of the usage of the concurrent programming constructs was only discussed superfi-
cially. In sharp contrast, here, it was the subject matter of most of the research questions. In addition, this new effort
attempted to statistically correlate the obtained data about the evolution in the usage of some concurrent programming
constructs.

9. Conclusion

This paper presents an empirical study into a large-scale Java open source repository. We found out that developers
employ mainly simple mutual exclusion constructs. These constructs are easy to understand (though difficult to reason
about) and have been available in Java since its initial version, released more than 15 years ago. Almost 80% of the
concurrent projects include at least one synchronized method. Still, less than 25% of the projects employ the
abstractions implemented by the java.util.concurrent library. We have noticed a tendency, nonetheless, of
growth in the use of this library. In particular, more active projects seem to be using this library more frequently than
the less active ones, which suggests this percentage is a conservative lower bound.

The most frequently and intensively used mechanisms to protect shared variables from concurrent threads are
synchronized blocks and methods. The volatile modifier, explicit locks (including variations such as read-write
locks), and atomic data types are less common, albeit growing in popularity. Developers are still using Hashtable

and HashMap, even though the former is thread-safe but inefficient and the latter is not thread-safe. Although almost
80% of the concurrent projects have employed HashMap, only 12.11% and 50.14% of these projects have used some
concurrent collections and Hashtable, respectively. We found out that the Runnable interface is the most common
approach to define new threads and that executors have been growing in popularity. We also found out that developers
are apparently not worried about errors that might cause threads to end abruptly.

This study has revealed many opportunities for researchers working on program reestructuring approaches. We
have identified that developers waste a large number of opportunities to use high level constructs for concurrent
programming, in favor of lower-level, more error-prone constructs. This suggests that previous [3, 4, 43, 11, 40] and
future work on the introduction of these high-level constructs in existing programs have fertile ground to work on. At
the same time, it is important to point out that using the high-level constructs is often not feasible, because it would
require a large amount of refactoring, which indicates yet another opportunity for future research.

In the future, we intend to investigate recent proposals [44] for automatically resolving dependencies in large-scale
repositories. This will allow us to use type information in our study, which will support more interesting analyses to be
conducted. We also intend to investigate the organization of concurrency code in the analyzed projects. Furthermore,
we intend to assess the extent to which exception handling constructs complicate concurrent/parallel programming.
Another interesting point of study is to analyze source code evolution in order to identify finer-grained modifications,
which can tell us if programmers are using refactoring techniques in their applications. Finally, we plan to investigate
additional source repositories, such as CodePlex and Github, as well as to investigate other programming languages,
especially Scala, which runs on the JVM, has numerous constructs for concurrent/parallel programming, and has more
than 18,000 projects at Github.
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