
Adopting DevOps in the Real World: A Theory, a Model, and a

Case Study

Welder Pinheiro Luza, Gustavo Pintob,∗, Rodrigo Bonifácioc

aBrazilian Federal Court of Accounts
bFederal University of Pará

cUniversity of Braśılia

Abstract

DevOps is a set of practices and cultural values that aims to reduce the barriers between
development and operations teams. Due to its increasing interest and imprecise definitions,
existing research works have tried to characterize DevOps.

Nevertheless, little is known about the practitioners’ understanding about successful
paths for DevOps adoption. Therefore, our goal is to detail real scenarios of DevOps adop-
tion, presenting a theory, a model, and a case study.

We used classic Grounded Theory to build a theory about 15 scenarios of successful
DevOps adoption in companies from different domains across 5 countries. We proposed a
model (i.e., a workflow for DevOps adoption) and evaluated it through a case study at a
Brazilian Government institution. We used a focus group to collect the company perceptions
about DevOps adoption, including the model’ application.

This paper increments the existing view of DevOps by detailing real scenarios and ex-
plaining the role of each category during DevOps adoption. We provide evidence that col-
laboration is the core DevOps concern, contrasting with an existing wisdom that automation
and tooling can be enough to achieve DevOps.

Altogether, our results contribute to: generating an adequate understanding of DevOps,
from the practitioners’ perspective; and assisting other institutions in the migration path
towards DevOps adoption.

Keywords: DevOps, Grounded Theory, Software Development, Software Operations,
Focus Group

1. Introduction

DevOps is a set of practices and cultural values that has emerged in the software develop-
ment industry [1, 2, 3, 4]. Even before the existence of the term — a mix of “development”

∗I am corresponding author
Email addresses: welder.luz@tcu.gov.br (Welder Pinheiro Luz), gpinto@ufpa.br (Gustavo Pinto),

rbonifacio@cic.unb.br (Rodrigo Bonifácio)

Preprint submitted to Journal of Systems and Software June 25, 2019

and “operations” words [5] — companies like Flickr [6] had already pointed out the need
to break the existing separation between the operations and software development teams.
Since then, the term that although appeared without a clear delimitation, gained strengths
and interests from companies that perceived the benefits of applying agile practices in op-
eration tasks. DevOps claimed benefits include increased organizational IT performance
and productivity, cost reduction in software lifecycle, improvement in operational efficacy
and efficiency, better quality of software products, and greater business alignment between
development and operations teams [4, 7, 8]. However, the adoption of DevOps is still a chal-
lenging task. Even though there is a plethora of information, practices, and tools related to
DevOps, it is still unclear how one could leverage such rich, yet scattered, information in an
organized and structured way to properly adopt DevOps.

Existing research works have proposed a number of DevOps characterizations, for in-
stance, as a set of concepts with related practices [1, 2, 3, 4, 9, 10]. Although some of these
studies leverage qualitative approaches to gather practitioners’ perception (for instance, con-
ducting interviews with them), they focus on characterizing DevOps, instead of providing
recommendations to assist on DevOps adoption. Consequently, our research problem is
that the obtained DevOps characterization provides a comprehensive understanding of the
elements that constitute DevOps, but do not provide detailed guidance to support newcom-
ers interested in adopting DevOps. As a consequence, many practical and timely questions
still remain open, for instance: (1) Is there any recommended path to adopt DevOps?
(2) Since DevOps is composed by multiple elements [2], do these elements have the same
relevance, when adopting DevOps? (3) What is the role played by elements such as mea-
surement, sharing, and automation in a DevOps adoption? To answer these questions, we
need a holistic understanding of the paths followed in successful DevOps adoptions.

This paper is a continuation of a previous study [11]. In our previous study, we intro-
duced a model (i.e., a workflow for DevOps adoption) based on the perceptions of prac-
titioners from 15 companies across five countries that successfully adopted DevOps. The
model was constructed based on a classic Grounded Theory (GT) approach, and makes clear
that practitioners interested in adopting DevOps should focus on building a collaborative
culture , which prevents common pitfalls related to focusing on tooling or automation [12].
We instantiated our model in the Brazilian Federal Court of Accounts (hereafter TCU),1

a Brazilian Federal Government institution. TCU was bogged down in implanting specific
DevOps tools, repeating the same non-DevOps problems, with conflicts between develop-
ment and operations teams about how to divide the responsibilities related to different facets
in the intersection between software development and software provisioning.

When instantiated, our model helped TCU to change its focus to improve the collabo-
ration between teams, and to use the tooling to support (rather than being the goal of) the
entire process. In our previous work we briefly introduced this experience at TCU. Com-
plementing this initial research, in this paper we report the current status of the DevOps
adoption at TCU as a whole, including an empirical assessment of our model. We collect
the TCU perceptions through a focus group with four of its directly involved professionals,

1http://www.tcu.gov.br/

2

two of each team (development and operations). Based on the results of the focus group, we
review our theory in this paper, which is detailed using a well-known framework for building
theories on software engineering [13]. The main contributions of this paper are the following:

• A review and extended description of our work that builds a model and a theory about
DevOps adoption. This theory might support practitioners interested in adopting
DevOps, based on evidence acquired from industry peers.

• An instantiation of this theory in a real world, non-trivial context. Specifically, TCU,
as a government institution, is rather different from typical tech companies that have
successfully reported the adoption of DevOps, which substantiate the DevOps poten-
tial, even in more traditional companies.

• The results of a focus group that evidenced that the use of our theory in TCU brought
several benefits and now DevOps practices have been disseminated at TCU. We also
report initial benefits of DevOps adoption in this company, in particular the introduc-
tion of an agile approach for software deployment and provisioning.

The rest of the work is organized as follows: Section 2 presents our method and the
settings used to conduct this research. Section 3 describes our preliminary findings on what
constitute DevOps, along with the main enablers and outcomes categories. In Section 4 we
present our theory regarding a successful DevOps adoption, while Section 5 describes our
three step model that one could use to adopt DevOps. Next, in Section 6 we discuss the
findings of applying our model in a real world setting. Section 7 discusses some threats to
validity, while Section 8 presents the related work. Finally, Section 9 concludes our work
and suggest eventual research opportunity for future work.

2. Method and Settings

The general goal of this research is two fold. Fist, we aim to develop a model on DevOps
adoption, considering the perspective of practitioners who contributed to the adoption of
DevOps in the organizations they work for. Second we investigate the relevance of this
model in a real DevOps adoption scenario. Tables 1 and 2 summarize our research goals
using a GQM (Goals/Questions/Metrics) template [14]. We investigate two main research
questions, which we further develop during our research. These main research questions
are

(RQ1) How do practitioners characterize a successfully path for DevOps adoption? This is a
broad question that motivates us to build a theory and a model for DevOps adoption.
As discussed in this section, we further refine this general research question in a
number of sub-questions, using a typical Grounded Theory approach (Section 2.1).

(RQ2) How does our model contribute to the adoption of DevOps on a specific scenario?
Answering this question allows us to understand the relevance of our model, showing
its practical implications in a real settings. We investigate this question using the
focus group method (Section 2.2).

3

Analyze Object under measurement

For the purpose of Understand the process of DevOps adoption.

With respect to the objectives that motivate a DevOps adoption process
as well as the concerns that might enable DevOps adop-
tion or the concerns that correspond either to the benefits
or to challenges related to DevOps adoption.

From the view point of practitioners that have contributed to a previous effort
on DevOps adoption.

In the context of companies in different domains that have adopted Dev-
Ops.

Table 1: GQM related to our goal of characterizing DevOps adoption

Analyze Object under measurement

For the purpose of Understand the relevance of our DevOps adoption
model.

With respect to the guidance it provides on the activities that might lift
the results of a DevOps adoption effort.

From the view point of practitioners that are participating on a DevOps adop-
tion effort.

In the context of Brazilian Government Institution.

Table 2: GQM related to our goal of assessing the DevOps adoption model

We address these questions using a qualitative research, and therefore we do not use
any specific software engineering metric. Nonetheless, to investigate some of the benefits
of adopting DevOps at TCU, we explore two metrics: the maximum number of daily and
weekly deployments for a set of systems. Besides other benefits, deployment agility is a
crytical achievement from adopting DevOps at TCU. Before that, deployments activities for
these systems occur once a week,

We use a multi-method approach to achieve our results. First, we use Grounded Theory
(GT) as the research method to build an explanation about how DevOps was successfully
adopted in companies that claims to have made it. Based on this explanation, we proposed a
model to guide new adopters. Second, we use the Focus Group method to explore in details
a real experience on DevOps adoption, including the application of our model.

2.1. Grounded Theory

Grounded Theory was originally proposed by Glaser and Strauss [15]. As distinguishing
features, GT has (1) the absence of clear research hypothesis upfront and (2) limited expo-
sure to the literature at the beginning of the research. That is, GT is a theory-development

4

approach (the hypothesis emerge as a result of a investigation), in contrast with more tra-
ditional theory-testing approaches [16]—e.g., those that use statistical methods to either
confirm or refute pre-established hypothesis.

The motivation to use GT is due to three main reasons. First, GT is a consolidated
method in other areas of research — notably medical sociology [17], nursing [18], educa-
tion [19], and management [20]. More recently, GT is also being increasingly employed to
study software engineering research topics [21, 22, 23]. Second, GT is considered an ad-
equate approach to answer research questions that aims to characterize scenarios under a
personal perspective of those engaged in a discipline or activity [18], which is exactly the
scenario here (i.e., what are the successful adoption paths for DevOps?). Finally, GT allows
researchers to build an independent and original understanding, which is adequate to collect
empirical evidence directly from the practice on industry without bias of previous research.
The evidence is only reintegrated back with the existing literature after the step of theory
construction.

Since the publication of the original version of GT [15], several modifications and varia-
tions have been proposed to the method, coming to exist at least seven different versions [24].
Here we chose the classic version, mainly because we did not have a research question at
the beginning of our research, exactly as suggested in this version. We actually started from
an area of interest: successful DevOps adoption in industry. In addition, research works in
software engineering that leverage GT predominantly use this version [22]. We carried out
our research using an existing guideline about how to conduct a Grounded Theory [23] re-
search. This guideline organizes a GT investigation in 3 steps: Open Coding Data Collection,
Selective Coding Data Analysis, and Theoretical Coding.

(a) Open Coding Data Collection. We started our research by collecting and analyzing
data from companies that claim to have successfully adopted DevOps. To this end, we
have conducted a raw data analysis that searches for patterns of incidents to indicate
concepts, and then grouped these concepts into categories [22].

(b) Selective Coding Data Analysis. In the second step, we evolve the initial set of
categories by comparing new incidents with the previous ones. Selective coding starts
when a “core category” is identified [22]. The core category is responsible for enabling
the integration of the other categories and structuring the results into a dense and
consolidated grounded theory [25]. In selective coding, we only considered the specific
variables that are directly related to the core category, in order to enable the production
of an harmonic theory [16, 26]. Selective coding ends when we achieve a theoretical
saturation, which occurs when the last few participants provided more evidence and
examples but no new concepts or categories [15].

(c) Theoretical Coding. After saturation, we built a theory that explains the categories
and the relationships between the categories. Additionally, we reintegrated our theory
with the existing literature, which allowed us to compare our proposal with other theories
about DevOps. That is, using a Grounded Theory approach, one should only conduct

5

a literature review in later stages of a research, in order to avoid external influences to
conceive a theory [27].

Throughout the process, we wrote memos capturing thoughts and analytic processes; the
memos support the emerging concepts, categories, and their relationships [27].

Regarding data collection, we conducted semi-structured interviews with 15 practitioners
of companies from Brazil, Ireland, Portugal, Spain, and United States that contributed to
DevOps adoption processes in their companies. Participants were recruited by using two
approaches: (1) through direct contact in a DevOpsDays event in Brazil and (2) through
general calls for participation posted on DevOps user groups, social networks, and local
communities. In order to achieve a heterogeneous perspective and increase the wealth of
information in the results, we consulted practitioners from a variety of companies. Table 3
presents the characteristics of the participants that accepted our invitation. To maintain
anonymity, in conformance with the human ethics guidelines, hereafter we will refer to
the participants as P1–P15 (first column). We signed a non-disclosure agreement with the
investigated companies to use the data only in the context of our study and, therefore, we
cannot disclose them.

Table 3: Participant Profile. SX means software development experience in years, DX means DevOps
experience in years, CN means country of work, and CS means company size (S<100; M<1000; L<5000;
XL>5000).

P# Job Title SX DX CN Domain CS

P1 DevOps Developer 9 2 IR IT S
P2 DevOps Consultant 9 3 BR IT M
P3 DevOps Developer 8 1 IR IT S
P4 Computer Technician 10 2 BR Health S
P5 Systems Engineer 10 3 SP Telecom XL
P6 Developer 3 1 PO IT S
P7 Support Analyst 15 2 BR Telecom L
P8 DevOps Engineer 20 9 BR Marketing M
P9 IT Manager 14 8 BR IT M
P10 Network Admin. 15 3 BR IT S
P11 DevOps Supervisor 6 4 BR IT M
P12 Cloud Engineer 9 3 US IT L
P13 Technology Manager 18 6 BR Food M
P14 IT Manager 7 2 BR IT S
P15 Developer 3 2 BR IT S

The interviews were conducted between April 2017 and April 2018 by means of Skype
calls. The interviews lasted a minimum of 20 minutes, a maximum of 50 minutes, and an
average of 31 minutes. Data collection and analysis were iterative so the collected data helped
to guide future interviews. Questions evolved according to the progress of the research. We

6

started with five open-ended questions: (1) What motivated the adoption of DevOps? (2)
What does DevOps adoption mean in the context of your company? (3) How was DevOps
adopted in your company? (4) What were the results of adopting DevOps? (5) What were
the main difficulties?

As the analyzes were being carried out, new questions were added to the script. These
new questions were related to the concepts and categories identified in previous interviews.
Examples of new questions include: (1) What is the relationship between deployment au-
tomation and DevOps adoption? (2) Is it possible to adopt DevOps without automation?
(3) How has your company fostered a collaborative culture?

With respect to data analysis, the interviews were recorded, transcribed, and analyzed.
The interviews with participants from Brazil and Portugal were translated from Portuguese
into English.

The first moment of the analysis, called open coding in GT, starts immediately after
the transcription of the first interview. Open coding lasted until there was no doubt about
the core category of the study. Similar to that described by Adolph et al. [27], we started
considering a core category candidate and changed later. The first core category candidate
was automation , but we realized that this category did not explain most of the behaviors
or events in data. The sense of shared responsibilities in solving problems, and the notion of
product thinking are examples of events that could not be naturally explained in terms of
automation . We then started to understand that collaborative culture also appeared
recurrently in the analysis and with more potential to explain the remaining events. Thus, we
asked the respondents explicitly about the role of automation and how the collaborative
culture is formed in a DevOps adoption process.

Considering the script adaptations and the analysis of new data in a constant comparison
process, taking into account the previous analyses and the respective memos written during
all the process, after the tenth interview, we concluded that collaborative culture was the
core category regarding how DevOps was successfully adopted. At this moment, the open
coded ended and the selective coding started. We started by restricting the coding only
to specific variables that were directly related to the core category and their relationships.
Following three more interviews and respective analysis, we realized that the new data
added less and less content to the emerging theory. That is, the explanation around how
the collaborative culture category is developed showed signs of saturation. We then
conducted two more interviews to conclude that we had reached a theoretical saturation,
that is, we were convinced there were no more enablers or outcomes related to DevOps
adoption, the relationship between all of them was adequate and the properties of core
category were well developed.

At this point, we started the theoretical coding to find a way to integrate all the concepts,
categories, and memos in the form of a cohesive and homogeneous theory, where we have
pointed out the role of the categories as enablers and outcomes. We will present more details
about the results of our theoretical coding phase in the next section. It is important to note
that raw interview transcripts are full of noise. We started the coding by removing this
noise and identifying the key points. Key points are summarized points from sections of the
interview [28]. For example:

7

Figure 1: Coding: Building Categories

Raw data: “So, here we have adopted this type of strategy that is the infrastructure as
code, consequently we have the versioning of our entire infrastructure in a common language,
in such a way that any person, a developer, an architect, the operations guy, or even the
manager, he can look at it and describe that the configuration of application x is y. So, it
aggregates too much value for us exactly with more transparency”

Key point: “Infrastructure as code contributes to transparency because it enables the
infrastructure versioning in a common language to all professionals”

We then assigned codes to the key point. A code is a phrase that summarizes the key
point and one key point can lead to several codes [21].

Code: Infrastructure as code contributes to transparency
Code: Infrastructure as code provides a common language
In this example, the concept that emerged was “infrastructure as code”. The expression

corresponding to this concept comes directly from raw data, but this is not a rule. It
is common for the concept to be an abstraction, without emerging from an expression
present in raw data. At this moment, we already identified other concepts that contribute
to transparency. We then wrote the following memo:

Memo: Similar to sharing on a regular basis and shared pipelines, the concept of in-
frastructure as code is an important transparency related one. These transparency related
concepts have often been cited as means to achieve greater collaboration between teams.

The constant comparison method was repeated on the concepts to produce a third level
of abstraction called categories. Infrastructure as code was grouped together with five other
concepts into the sharing and transparency category. Figure 1 illustrates how that
abstraction of concepts become a category.

2.2. Focus Group

Focus group emerged as a research method in the social sciences in the 1950s and is cur-
rently widely used, for example, in sociological studies, market research, product planning,
and system usability studies [29]. Morgan [30] defines focus group as a research technique
that collects data through group interaction on a specific topic determined by the researcher.

According to F. Shull et al. [29], focus groups typically have between three and twelve
participants, are designed to obtain personal perceptions of members of one or more groups

8

involved in a defined area of research interest and have as benefits the production of candid,
often insightful information, with a low cost and fast execution. These characteristics make
the focus group an adequate alternative to the purposes of assessing our DevOps adoption
model. According to the authors, the discussion is guided and facilitated by a researcher-
moderator who follows a predefined structure of questions.

We followed a structure similar to that performed by Lehtola et al. [31], consequently, the
focus group was conducted as follows: (1) the researcher-moderator served as focus group
facilitator providing participants with the discussion topics; (2) at the beginning of each
topic’ discussion, the questions were presented to participants who wrote their ideas and
keywords in post-it notes and (3) after that, the notes were placed on a white board and
served as a starting point for discussions on the respective topic in order to reach conclusions
about the respective question.

3. DevOps: Categories and Concepts

Here we detail our understanding of the core category of DevOps adoption (collaborative
culture) and relate it to categories that either work as DevOps enablers or are expected
outcomes of a DevOps adoption process. We have highlighted the concepts along with raw
data quotes from the interviews.

3.1. The Core Category: Collaborative Culture

The collaborative culture is the core category for DevOps adoption. A collaborative
culture essentially aims to remove the silos between development and operations teams
and activities. As a result, operations tasks—like deployment, infrastructure provisioning
management, and monitoring— should be considered as regular, day-to-day, development
activities. This leads to the first concept related to this core category: operations tasks
should be performed by the development teams in a seamless way.

“A very important step was to bring the deployment into day-to-day development, no
waiting anymore for a specific day of the week or month. We wanted to do deployment
all the time. Even if in a first moment it were not in production, a staging environment
was enough. [...] Of course, to carry out the deployment continuously, we had to provide
all the necessary infrastructure at the same pace.” (P14, IT Manager, Brazil)

Without DevOps, a common scenario is an accelerated software development without
concerns about operations. At the end, when the development team has a minimum viable
software product, it is sent to the operations team for publication. Knowing few things
about the nature of the software and how it was produced, the operations team has to cre-
ate and configure an environment and to publish the software. In this scenario, software
delivery is typically delayed and conflicts between teams show up. When a collaborative
culture is fomented, teams collaborate to perform the tasks from the first day of software
development. With the constant exercise of provisioning, management, configuration and
deployment practices, software delivery becomes more natural, reducing delays and, conse-
quently, the conflicts between teams.

9

“We work using an agile approach, planning 15-day sprints where we focused on pro-
ducing software and producing new releases at a high frequency. However, at the time of
delivering the software, complications started to appear. (...) Deliveries often delayed
for weeks, which was not good neither for us nor for stakeholders.” (P6, Developer,
Portugal)

As a result of constructing a collaborative culture , the development team no longer
needs to halt its work waiting for the creation of one application server, or for the execution
of some database script, or for the publication of a new version of the software in a staging
environment. Everyone needs to know the way this is done and, with the collaboration of
the operations team, this can be performed in a regular basis. If any task can be performed
by the development team and there is trust between the teams, this task is incorporated
into the development process in a natural way, manifesting the second concept related to
collaborative culture category: software development empowerment.

“ It was not feasible to have so many developers generating artifacts and stopping their
work to wait for another completely separate team to publish it. Or needing a test en-
vironment and having to wait for the operations team to provide it only when possible.
These activities have to be available to quickly serve the development team. With Dev-
Ops we supply the need for freedom and have more power to execute some tasks that
are intrinsically linked to their work.” (P5, Systems Engineer, Spain)

A collaborative culture requires product thinking, in substitution to operations
or development thinking. The development team has to understand that the software
is a product that does not end after “pushing” the code to a project’s repository and the
operations team has to understand that its processes do not start when an artifact is received
for publication. Product thinking is the third concept related to our core category.

“We wanted to hire people who could have a product vision. People who could see the
problem and think of the best solution to it, not only thinking of a software solution,
but also the moment when that application will be published. We also brought together
developers to reinforce that everyone has to think of the product and not only in their
code or in their infrastructure” (P12, Cloud Engineer, United States)

There should be a straightforward communication between teams. Ticketing systems
are cited as a typical and inappropriate means of communication between development and
operations teams. Face-to-face communication is the best option, but considering that it is
not always feasible, the continuous use of tools like Slack and Hip Chat was cited as more
appropriate options.

“We also use this tool (Hip Chat) as a way to facilitate communication between devel-
opment and operations teams. The pace of work there is very accelerated, and thus it is
not feasible to have a bureaucratic communication. (...) This gave us a lot of freedom
to the development activities, in case of any doubt, the operations staff is within the

10

reach of a message.” (P5, Systems Engineer, Spain)

There is a shared responsibility to identify and fix the issues of a software when transition-
ing to production. The strategy of avoiding liability should be kept away. The development
team must not say that a given issue is a problem in the infrastructure, then it is opera-
tions team’ responsibility. Likewise, the operations team must not say that a failure was
motivated by a problem in the application, then it is development team’s responsibility. A
blameless context must exist. The teams need to focus on solving problems, not on laying
the blame on others and running away from the responsibility. The sense of shared re-
sponsibilities involves not only solving problems, but also any other responsibility inherent
in the software product must be shared. Blameless and shared responsibilities are the
remaining concepts of the core category.

“We realized that some people were afraid of making mistakes. Our culture was not
strong enough to make everyone feel comfortable to innovate and experiment without
fear of making mistakes. We made a great effort to spread this idea that no-one is to
be blamed for any problem that may occur. We take every possible measure to avoid
failures, but they will happen, and only without blaming others we will be able to solve
a problem quickly.” (P8, DevOps Engineer, Brazil)

At first glance, considering the creation and strengthening of the collaborative culture
as the most important step towards DevOps adoption seems somewhat obvious, but the
respondents cited some mistakes that they consider recurrent in not prioritizing this aspect
in a DevOps adoption:

“In a DevOps adoption, there is a very strong cultural issue that the teams sometimes
are not adapted to. Regarding that, one thing that bothers me a lot and that I see
very often is people hitching DevOps exclusively by tooling or automation.” (P9, IT
Manager, Brazil)

Besides the core category (collaborative culture), we have identified three other sets
of categories: the enablers of DevOps adoption, the consequences of adopting DevOps, and
the categories that are both enablers and consequences.

3.2. Enabler Categories

Next we detail the categories that support the adoption of DevOps practices, including
automation and sharing and transparency .

3.2.1. Automation

This category presents the higher number of related concepts. This occurs because
manual proceedings are considered strong candidates to propitiate the formation of a silo,
hindering the construction of a collaborative culture . If a task is manual, a single person
or team will be responsible to execute it. Although transparency and sharing can be
used to ensure collaboration even in manual tasks, with automation the points where silos
may arise are minimized.

11

“When a developer needed to build a new application, the previous workflow demanded
him to create a ticket to the operations teams, which should then manually evaluate and
solve the requested issue. This task could take a lot of time and there was no visibility
between teams about what was going on (. . .). Today, those silos do not exist anymore
within the company, in particular because it is not necessary to execute all these tasks
manually. Everything has been automated.” (P12, Cloud Engineer, United States)

In addition to contributing to transparency , automation is also considered important
to ensure reproducibility of tasks, reducing rework and risk of human failure. Consequently,
automation increases the confidence between teams, which is an important aspect of the
collaborative culture .

“Before we adopted DevOps, there was a lot of manual work. For example, if you needed
to create a database schema, it was a manual process; if you needed to create a database
server, it was a manual process; if you needed to create additional EC2 (Amazon Elastic
Compute Cloud) instances, such a process was also manual. This manual work was time
consuming and often caused errors and rework.” (P1, DevOps Developer, Ireland)

The eight concepts regarding the automation category will be detailed next. In all
interviews we extracted explanations about deployment automation (1), as part of Dev-
Ops adoption. Software delivery is the clearest manifestation of value delivery in software
development. In case of problems in deployment, the expectation of delivering value to
business can quickly generate conflicts and manifest the existence of silos. In this sense,
automation typically increases agility and reliability. Some other concepts of automation
go exactly around deployment automation.

It is important to note that frequent and successfully deployments are not sufficient to
generate value to business. Surely, the quality of the software is more relevant. Therefore,
quality checks need to be automated as well, so they can be part of the deployment pipeline,
as is the case of test automation (2). In addition, to automate application deployment,
the environment where the application will run needs to be available. As a consequence,
infrastructure provisioning automation (3) must be also considered in the process. Be-
sides being available, the environment needs to be properly configured, including the amount
of memory and CPU, availability of the correct libraries versions, and database structure. If
the configuration of some of these concerns has not been automated, the deployment activity
can go wrong. Therefore, the automation of infrastructure management (4) is another
concept of the automation category.

“Our primary motivation for adopting DevOps was basically reducing rework. Almost
every week we had to basically build new servers and start them manually, which was
very time-consuming.” (P4, Computing Technician, Brazil)

Modern software is built around services [32]. Microservices was commonly cited as one
aspect of DevOps adoption. To Fowler and Lewis [33], in the microservice architectural style,

12

services need to be independently deployable by fully automated deployment machinery. We
call this part of microservices characteristics of autonomous services (5). Container-
ization (6) is also mentioned as a way to automate the provisioning of containers—the
environment where these autonomous services will execute. Monitoring automation (7)
and recovery automation (8) are the remaining concepts. The former refers to the ability
to monitor the applications and infrastructure without human intervention. One classic ex-
ample is the widespread use of tools for sending messages reporting alarms—through SMS,
Slack/Hip Chat, or even cellphone calls—in case of incidents. The latter is related to the
ability to either replace a component that is not working or rollback a failed deployment
without human intervention.

3.2.2. Transparency and Sharing

It represents the grouping of concepts whose essence is to help disseminate information
and ideas among all. Training, tech talks, committees lectures, and round tables are exam-
ples of these events. Creating channels by using communication tools is another recurrent
topic related to sharing along the processes of DevOps adoption. According to the content
of what is shared, we have identified three main concepts: (1) knowledge sharing: the
professionals interviewed mention a wide range of skills they need to acquire during the
adoption of DevOps, citing structured sharing events to smooth the learning curve of both
technical and cultural knowledge; (2) activities sharing: where the focus is on sharing
how simple tasks can or should be performed (e.g., sharing how a bug has been solved).
Communication tools, committees, and round tables are the common forum for sharing this
type of content; and (3) process sharing: here, the focus is on sharing whole working
processes (e.g., the working process used to provide a new application server). The content
is more comprehensive than in sharing activities. Tech talks and lectures are the common
forum for sharing processes.

“Nowadays . . . everyone knows what everyone else is working on. That’s why we have
some structured actions. For instance, if one person wants to share some content
relevant to the rest of the team, she is completely free to book a room and carry out
her own tech talk. . . . Considering this investment in removing silos, the guy knows
that every procedure should be transparent and shared to anyone that is interested on
that. This creates a positive cycle that increases the sense of collaboration and makes
one to share more details about what she does. ”(P7, Support Analyst, Brazil)

Sharing concepts contribute with the collaborative culture . For example, all team
members gain best insight about the entire software production process, with a solid un-
derstanding of shared responsibilities. A shared vocabulary also emerged from sharing
and this facilitates communication. The use of infrastructure as code was recurrently
cited as a means for guaranteeing that everyone knows how the execution environment of
an application is provided and managed. Next is an interview transcript which sums up this
concept.

13

“So, here we have adopted this type of strategy that is the infrastructure as code, con-
sequently we have the versioning of our entire infrastructure in a common language,
in such a way that any person, a developer, an architect, the operations guy, or even
the manager, he can look at it and describe that the configuration of application x is y.
So, it aggregates too much value for us exactly with more transparency.” (P12, Cloud
Engineer, United States)

Regarding transparency and sharing , we have also found the concept of sharing on
a regular basis, which suggests that sharing should be embedded in the process of software
development, in order to contribute effectively to transparency (e.g., daily meetings with
Dev and Ops staff together was one practice cited to achieve this). As we will detail in the
continuous integration concept of the agility category, a common way to integrate all tasks
is a pipeline. Here, we have the concept of shared pipelines, which indicates that the code
of pipelines must be accessible to everyone, in order to foment transparency.

“The code of how the infrastructure is made is open to developers and the sysadmins
need to know some aspects of how the application code is built. The code of our pipelines
is accessible to everyone in the company to know how activities are automated” (P13,
Technology Manager, Brazil)

3.3. Categories related to the DevOps adoption outcomes

In this section we detail the categories that correspond to the expected consequences
with the adoption of DevOps practices, including agility and resilience ; as discussed as
follows.

3.3.1. Agility

Agility is frequently discussed as a major outcome of DevOps adoption. With more col-
laboration between teams, continuous integration with the execution of multidisciplinary
pipelines is possible, and it is an agile related concept frequently explored. These pipelines
might contain infrastructure provisioning, automated regression testing, code analysis, au-
tomated deployment and any other task considered important to continuously execute.

“When we adopted DevOps, our gain in productivity was very large. So we went from
a deploy per 15 days to 40 deploys a day. So . . . , we started to delivery more value to
the company in small time frames.” (P12, Cloud Engineer, United States)

These pipelines encourage two other agile concepts: continuous infrastructure pro-
visioning and continuous deployment. The latter is one of the most recurrent concepts
identified in the interview analysis. Before DevOps, deployment had been seen as a ma-
jor event with high risk of downtime and failure involved. After DevOps, the sensation of
risk in deployment decreases and this activity became more natural and frequent. Some
practitioners claim to perform dozens of deployments daily.

14

3.3.2. Resilience

Also related to an expected outcome of adopting DevOps, resilience refers to the ability
of applications to adapt quickly to adverse situations. The first related concept is auto
scaling, i.e., allocating more or fewer resources to applications that increase or decrease on
demand. Another concept related to the resilience category is recovery automation,
that is the capability that applications and infrastructure have to recovery itself in case of
failures. There are two typical cases of recovery automation: (1) in cases of instability in the
execution environment of an application (a container, for example) an automatic restart of
that environment will occur; and (2) in cases of new version deployment; if the new version
does not work properly, the previous one must be restored. This auto restore of a previous
version decrease the chances of downtimes due to errors in specific versions, which is the
concept of zero down-time, the last one of the resilience category.

“When it was necessary to deploy some specific systems, there was often a downtime
of a few minutes of the application. In the cases that the deployment did not succeed,
the downtime was even greater (perhaps a couple of hours). But with the adoption of
DevOps we were able to eliminate the downtime, particularly with the introduction of
Kubernetes (https://kubernetes.io/)” (P1, DevOps Developer, Ireland)

3.4. Categories that are both Enablers and Outcomes

Finally, we summarize the categories that are both enablers and outcomes, including
continuous measurement and quality assurance . More details about these categories
can be found in the original study [11].

Continuous Measurement. As an enabler, regularly performing the measurement and
sharing activities contributes to avoiding existing silos and reinforces the collaborative
culture , because it is considered a typical responsibility of the operations team. As an
outcome, the continuously collection of metrics from applications and infrastructure was
appointed as a necessary behavior of the teams after the adoption of DevOps. It occurs
because the resultant agility increases the risk of something going wrong. The teams should
be able to react quickly in case of problems, and the continuous measurement allows it to
be proactive and resilient.

Quality Assurance. In the same way as continuous measurement, quality assurance is
a category that can work both as enabler and as outcome. As enabler because increasing
quality leads to more confidence between the teams, which in the end generates a virtuous
cycle of collaboration. As outcome, the principle is that it is not feasible to create a scenario
of continuous delivery of software with no control regarding the quality of the products and
its production processes.

Another two concepts cited as part of quality assurance in DevOps adoption are the
use of source code static analysis (4) to compute quality metrics in source code and
the parity between environments (development, staging, and production) to reinforce
transparency and collaboration during software development.

15

4. A Theory on DevOps Adoption

The results of a grounded theory study, as the name of the method itself suggests, are
grounded on the collected data, so the hypotheses emerge from data. A grounded theory
should describe the key relationships between the categories that compose it, i.e., a set
of inter-related hypotheses [21]. We present the categories of our grounded theory about
DevOps adoption as a network of the two categories of enablers (automation , sharing
and transparency) that are commonly used to develop the core category collaborative
culture , as discussed in the previous section. Based on our understanding, implementing
the enablers to develop the collaborative culture typically leads to concepts related to two
categories of expected outcomes: agility and resilience . Moreover, there are two categories
that can be considered both as enablers and as outcomes: continuous measurement and
quality assurance . In this section, we describe the relationships between those categories,
building a theory of DevOps adoption.

4.1. A General Path for DevOps Adoption

In Section 2 we presented the general questions of this research, including: How do
practitioners characterize a successfully path for DevOps adoption? Here, we elaborated a
response to this question, based on our grunded theory study. The main point that should
be formulated is the construction of a collaborative culture between the software devel-
opment and operations teams and related activities. According to our findings, the other
categories, many of which are also present in other studies that have investigated DevOps,
only make sense if the practices and concepts related to them either contribute to the level of
a collaborative culture or lead to the expected consequences of a collaborative culture .
This leads to a general hypothesis of our work, which is:

General Hypothesis: DevOps brings several benefits related to Agility, Resilience,
and Software Quality Assurance. Nonetheless, to achieve this benefits, it is highly rec-
ommended to work towards a collaborative culture , removing silos and and imple-
menting a more direct communication between the teams.

The quote bellow makes explicit the relevance of a collaborative culture—as well as
the challenges to keep this culture-to achieve the benefits with DevOps adoption.

“Keeping (the collaborative) culture alive is still a challenge for us, and we consider it
very important. Here in the company, for example, we have tech talks that are monthly
conversations with the teams. The purpose of these Tech Talks is to share knowledge,
technologies, and work procedures, by increasing the transparency about how everything
works. We also have a DevOps culture Slack channel, where we discuss DevOps. The
idea is not to let the culture die, . . . , because that is the essence of DevOps for us.”
(P12, Cloud Engineer, United States)

This hypothesis emerged from our understanding about the perceptions of the practition-
ers on the concepts that might positively influence the adoption of DevOps. We built this

16

understanding iteratively, through discussions considering the transcripts, memos, categories
and their relationships. Surelly, during this process, different opinions emerged, though in
the end the authors of this paper agreed with this general hypothesis. For intance, in certain
moments of the research, we used to believe that DevOps would actually mean the end of
the operations teams. After several rounds of discussion, we concluded that DevOps actu-
ally focus on a collaborative approach for executing development and operation tasks. This
understanding induces four sub-hypothesis, as discussed in what follows.

Hypothesis 1: Certain categories related to DevOps adoption only make sense if used
to increase the collaborative culture level. We call this set of categories of enablers.

Based on this hypothesis, the maturity of DevOps adoption does not advance in situations
where only one team is responsible to understand, adapt, or evolve automation—even when
such automation supports different activities like deployment, infrastructure provisioning
and monitoring. The same holds for the other enabling categories. That is, in situations
that transparency and sharing do not contribute to the collaborative culture , they
do not contribute to DevOps adoption as a whole. This is clear when one of the participants
of our study states that

“DevOps involves tooling, but DevOps is not tooling. That is, people often focus on
using tools that are called ‘DevOps tools’, believing that this is what DevOps is. I
always insist that DevOps is not tooling, DevOps involves the proper user of tools to
improve software development procedures.” (P2, DevOps Consultant, Brazil)

Hypothesis 2: Some other categories are not related to DevOps adoption for con-
tributing to increase the collaborative culture level, but insted for emerging as an
expected or necessary consequence of the adoption. These represent the set of outcome
categories.

In a first moment, the simple fact that a team is more agile in delivering software,
or more resilient in failure recovery, does not contribute directly to bringing operations
teams closer to development teams. Nevertheless, a signal of a mature DevOps adoption is
an increasing capacity for continuously delivering software (and thus being more agile) and
for building resilient infrastructures.

Hypothesis 3: The categories Continuous Measurement and Quality Assurance
are both related to DevOps enabling capacity and to expected DevOps outcomes.

Measurement is cited as a typical responsibility of the operations team. At the same
time that sharing this responsibility reduces silos, it is also cited that measurement is a
necessary consequence of DevOps adoption. Particularly because the continuous delivery of
software requires more control, which is supplied by concepts related to the continuous

17

measurement category. The same premise is valid to the quality assurance category.
At first glance, quality assurance appears as one response to the context of agility in
operations as a result of DevOps adoption. But, the efforts in quality assurance of software
products increase the confidence between the development and operations teams, increasing
the level of collaborative culture .

Altogether, DevOps enablers are the means commonly used to increase the level of the
collaborative culture in a DevOps adoption process. We have identified five categories of
DevOps enablers: Automation , Continuous Measurement , Quality Assurance ,
Sharing , and Transparency . Another finding of our study leads to our fourth hypothesis.

Hypothesis 4: There is no precedence between enablers in a DevOps adoption process.

We have realized that the adoption process might not have to prioritize any enabler, and
a company that aims to implement DevOps should start with the enablers that seem more
appropriate (in terms of its specificities). Accordingly, we did not find any evidence that an
enabler is more efficient than another for creating a collaborative culture . Automation
is the category that appears more frequently in our study, though several participants make
clear that associating DevOps with automation is a misconception.

DevOps outcomes are the categories that does not primarily produce the expected ef-
fect of an enabler, typically concepts that are expected as consequences of an adoption of
DevOps. We have identified four categories that can work as DevOps outcomes: agility ,
continuous measurement , quality assurance , and software resilience . Note that,
as mentioned before, continuous measurement and quality assurance are both en-
ablers and outcomes.

That is, a well succeeded DevOps adoption typically increases the potential of agility
of teams and enables continuous measurement , quality assurance and resilience
of applications. However, in some situations, this potential is not completely used due to
business decisions. For example, one respondent cited that, at a first moment, the com-
pany did not allow the continuous deployment (more potential of agility) of applications in
production.

Considering the hypothesis we build from our understanding about a successfully path
for DevOps adoption, we answer our first research question “(RQ1) How do practitioners
characterize a successfully path for DevOps adoption?”

(RQ1) Answer: In order to successfully conduct an effort for DevOps adoption, prac-
titioners suggest the focus on building a collaborative culture (this is the essence
of DevOps), which should be achieved through Automation, Transparency and Knowl-
edge Sharing, Continuous Measurement, and Quality Assurance. Without setting up
collaborative culture as the main goal, the chances of failing to achieve the expected
benefits of adopting DevOps (e.g., Agility and Resilience) increase.

4.2. Outline of the Theory on DevOps Adoption
We summarize our theory in this section using a set of recommendations about building

and reporting theories in software engineering [13]. Accordingly, a theory should be described

18

in terms of constructs, propositions, explanation for the propositions, and scope of the
theory.

The main construct of our theory is DevOps adoption, which means any effort for build-
ing a collaborative culture between the development and operations teams. DevOps
adoption is supported by other constructs, including automation (deployment automation,
infrastructure provision automation, test automation, and so on) and knowledge sharing
(e.g., sharing procedures and making clear the task assignments of the teams). We aug-
mented our hypothesis to identify a set of nine propositions, which we can explain by means
of the categories, categories’ relations, and transcription memos. For instance, the necessity
of using tech talks, simplifying communication procedures, and employing tools like Slack
and Hip Chat explains the relevance of knowledge sharing (P2). Similarly, we can explain
proposition (P7) by considering our research transcriptions, like “DevOps reduces (or even
eliminates) downtime”. The scope of our theory relates to enterprise systems (in particular
those based on a service-oriented architecture).

(P1) The use of automation enables DevOps

(P2) The use of practices and tools for sharing knowledge enables DevOps

(P3) The use of continuous measurement procedures enables DevOps

(P4) The use of quality assurance methods enables DevOps

(P5) DevOps centered on collaborative culture increases the agility of the teams

(P6) DevOps centered on collaborative culture increases systems’ resilience

(P7) DevOps centered on collaborative culture decrease systems’ downtime

(P8) DevOps centered on collaborative culture supports continuous measurement

(P9) DevOps centered on collaborative culture supports SQA activities

Figure 2 represents the elements of our theory using the notation introduced in [13]. In
this notation, a construct is either represented as a class (light grey boxes) or as an attribute
of a class (white boxes within classes). Relationships model the propositions as arrows,
and the direction of the arrow models a cause-effect relation. For instance, in Figure 2,
the DevOps Collaborative Culture increases the agility of both development and operations
teams (proposition (P5).

5. A Model for DevOps Adoption

Based on H1-H4 hypothesis, we present a three step model that explains how to adopt
DevOps according to our understanding. The model considers the following steps:

19

Software
System

Enterprise systems
Service-oriented systems

Technology

DevOps
Collaborative

Culture

Actor

Development
Team

Production
Teams

Activity

(Task) Automation
P1

P3 / P8

Agility
P5

Resilience
P6

Downtime
P7

Continuous
Measurement

Quality
Assurance

P4 / P9

Knowledge Sharing
P2

Specialization

Dependency

Attribute of a concept

Class concept

Legend

Figure 2: A Theory for DevOps Adoption

1. In the first step, a company should disseminate the relevance of building a
collaborative culture between development and operations teams, as the main goal
of a DevOps effort.

2. In the second step, a company should select and develop the most suitable en-
ablers according to its context. The enablers are means commonly used to develop
the collaborative culture and its concepts.

3. In the third step, a company should check the outcomes of the DevOps adoption
in order to verify the alignment with industrial practices and to explore them according
to the company’s need.

Figure 3 illustrates the categories and the relationships according to the hypothesis. The
proposed model is built upon the hypothesis and is one of possible applications of the theory.
It was proposed assuming that following the patterns identified in companies that were well
succeeded in DevOps adoption can be a good way to reduce the risks of failure during the
process.

Our proposed model has been applied to guide the DevOps adoption at the Brazilian
Federal Court of Accounts (TCU) where one of the authors of this study works as a software
developer. In the next we present the details about the DevOps adoption at TCU and
explain the applicability and relevance of our model in a practical scenario.

20

Figure 3: Categories and Relationships. Categories label with a * means thant they are within both enabler
and expected outcomes categories.

6. Application of the Model

In this section we detail a real experience on DevOps adoption where we could demon-
strate the practical application of our DevOps adoption model. Initially, we explain the
context of the institution where we applied our model; after that, we present our percep-
tions about the model application; and, finally, we present the results of a focus group
containing the perception of four professionals from the institution about the adoption of
DevOps as a whole, including their opinion about the applicability and utility of our model
during the process.

6.1. Context

TCU is responsible for the accounting, financial, budget, performance, and property
oversight of federal institutions and entities of the country. Currently, there are 2500 pro-
fessionals working at TCU, of which approximately 300 work directly on either software
development or operations. The source code repository at TCU hosts more than 200 soft-
ware projects, totaling over 4 million lines of code.

For many years, the software development process at TCU was characterized by a strong
call for standardization of procedures. This approach favored the specialization of activities,
causing segregation of development and operations teams in a rigid silo structure. Work
on this structure revolved around bureaucratic communication and well-defined service level
agreements (SLAs). Communication between teams occurred basically through the use of
a corporate service-desk tool. The SLAs mostly ensured deadlines for the operations team
to perform the procedures that the development teams requested through the service-desk.
The procedures include provisioning of infrastructure and database servers for development,
testing, staging, and production environments, requesting access to server logs, and the most
controversial of all activities: deployment of new versions of applications. The deployment
involved a long chain of a week-long process, whose complex chaining of responsibilities often
ran out of schedule, causing months of delays in software deliveries.

In addition to delay the software delivering, the silo structure caused a devastating
blaming game between the teams. If there were delays in the delivery process, or errors in
some functionality, the focus was not on solving the problem, but rather on pointing out
which team was responsible for the problem.

When searching of solutions to mitigate these problems, and knowing the alleged ben-
efits of the approach, TCU included the development of the DevOps approach among the

21

objective of its IT area. The first attempt by the technical teams to reach the goal was
to hire consulting firms whose proposed solutions invariably involved implanting specific
DevOps tools. These DevOps tools were typically related to automate some aspect of the
process and, naturally, the teams turned their attentions to establish clear and separated
responsibilities to each aspect of the tools. Obviously, these DevOps tools only changed the
points of conflict. In this context, our research was developed and, after that, we applied
our model aiming to increase the DevOps level at TCU. In this section we described this
experience.

6.2. Applying Our Model for DevOps Adoption

Before applying our model, TCU had been using automation for supporting deployment
activities and focusing on the tooling dimension of DevOps. Considering this incomplete
perspective, the conflicts between development and operations teams continued. That is,
the mere advance in implanting “DevOps tools” simply changed the points of conflict, but
they persisted. Here we present our perception about how our model has contributed to
DevOps adoption at TCU.

6.2.1. Disseminating the Collaborative Culture

To start disseminating our model at TCU, we conducted a series of lectures to explain
both the model itself and the way it was formulated. After knowing the model, the pro-
fessionals began to understand that if TCU wants to succeed in DevOps adoption, tooling
and automation would not be enough. We consider that the teams changed their focus to
build a collaborative culture . This change was only possible due to two aspects: (1) the
engagement and sponsorship of the IT managers and (2) the explanations about the process
of constructing the model: although TCU is a governmental institution, its IT professionals
recognize the importance of staying in line with industry practice to avoid an already before
faced weight of dealing with completely legacy software.

Looking to the concepts within the collaborative culture category, the first practical
action at TCU was to facilitate communication between teams. The use of tickets and
SLAs were then abolished in most of the scenarios. In its turn, the concepts of software
development empowerment and shared responsibilities have found some resistance
from some professionals. The strategy to mitigate this cultural resistance involved the use of
enablers (that will be further discussed) and awareness about: (1) fortifying the collaboration
will bring benefits to all involved and especially to TCU and (2) following a model built upon
well succeeded experiences is a low-risk strategy for TCU to explore the benefits of DevOps.

Finally, we consider that the efforts to disseminate and promote the collaborative
culture are continuous, but the kick-off was given and it is possible to notice that the idea
has been widely accepted and applied by most of the involved professionals.

6.2.2. Applying the Enablers

Considering the enablers dimension of our model, TCU is currently applying sharing
and transparency concepts. The role of internal tech talks and committees to dissem-
inate that collaborative culture and related concepts is being reinforced. When a new

22

infrastructure had to be provided and configured, the current guideline is that these activ-
ities should be conducted in “pairs” involving members of development and infrastructure
teams. All application related tasks must be executed in a collaborative way. Naturally, the
professionals noticed that automation would facilitate the operation of that collaboration.
For this reason, the infrastructure provisioning and management was automated.

TCU also uses continuous measurement and quality assurance concepts as enablers of its
DevOps adoption. The applications started to be continuously tested and measured. The
tests were automated and included in the pipelines. Verification of test coverage and quality
code also became part of the pipeline. This increased the confidence between teams. More
confidence leads to a more robust collaborative culture , and a more robust collaborative
culture enables the company to explore the benefits of DevOps as will be seen below when
checking the outputs.

It is important to note that, before DevOps, deployment activities were historically a
controversial point at the TCU. Several conflicts occurred over time. Rigid procedures
were created to try to avoid problems. However, these “rigid procedures” often led to
periods of months without any software delivery. As our model advocates that there is
no precedence between enablers, the specific characteristics of the company are a good
starting point to select the most relevant enablers to explore. The TCU teams started by the
deployment, applying automation and quality checking in the process. With the automated
execution of tests and static source code analyzer, the development team demonstrated to
the operations team that the products had quality, increasing confidence between them and
reducing the necessity of rigid procedures to put some software in production. To automate
the deployment in a collaborative way, the teams jointly developed an infrastructure as code
strategy to put the details about deployment in the application source code repository itself,
increasing the transparency. Little by little the deployment of applications has ceased to be
a ceremonial event to become a day-to-day activity.

6.2.3. Checking the Outcomes

Initially, we highlight that a more robust collaborative culture enabled TCU to ex-
plore a scenario of continuous deployment of some applications. The newer applications
have pipelines that publish every commit in production. This continuous delivery is only
possible in applications whose pipelines contain several quality checks, mitigating the risk of
something going wrong. Additionally, automated monitoring is required for these applica-
tions. Some applications have a history of dozen of deployments in a single day, contrasting
with one deployment per week in the best case, or more than a month without publishing
in the worst.

Currently, among the TCU’s 131 enterprise systems, 15 are developed in a DevOps
way. To illustrate the benefits of DevOps in terms of continuous delivery, at Table 4 we
present some numbers related to deployments in production of the most significant systems.
Considering the e-TCE system, after the DevOps adoption, it was possible to make 29
deployments on a single day. Before the DevOps adoption, and due to the rigid policies
of the operations team, the deployments were schedule to occur once a week. Now, for
these specific systems, it is possible to deploy at any moment and the typical downtime

23

of the old enterprise system (around 15 minutes) was almost completely eliminated for the
new systems using Kubernetes. That is, making the deployment activities more agile and
reducing the downtime of the applications are the current main outcomes of introducing
DevOps at TCU.

System Name MDDS MWDS

Autenticidade de Documentos (26 KLOC) 18 37
Cobrança Executiva (33 KLOC) 12 33
Conecta TCU (39 KLOC) 42 51
e-Cautelares (47 KLOC) 9 12
e-TCE (261 KLOC) 29 68
e-TCU Gestores (98 KLOC) 18 64
Mapa de Exposição a Fraude (7 KLOC) 9 39
Ministro (48 KLOC) 17 51
Siga (55 KLOC) 12 17

Table 4: Deployments of TCU’ Enterprise Systems. MDDS means the maximum number of deployments in
a day. MWDS means the maximum number of deployments in a week

To reduce even more the risks related to continuously delivery software in production, and
taking advantage of greater collaboration between its development and operations teams,
the TCU started to explore the potential of DevOps tools, like recovery automation, zero
down-time, and auto scaling.

In our evaluation, the TCU’ change of focus from tooling to collaboration was decisive to
increase the confidence between teams, reduce the blame game and, consequently, to enable
the company to sustainably exploit the benefits of adopting DevOps. In addition, our model
has served as a roadmap that allows the teams to focus on the collaborative culture . So,
the outcomes already present in TCU’ DevOps Adoption are compatible with those foreseen
in the third step of our model.

6.2.4. General Considerations

Since the TCU is a government institution, some advances in DevOps adoption still comes
up against regulatory issues. For example, there are internal regulations that establish that
only the operations sector is responsible for issues related to application infrastructure,
contrasting with shared responsibilities that are part of the collaborative culture .

The collaborative culture needs to be continuously fomented and our model is only a
general roadmap, the efforts need to continue over time to deal with incidents that disfavor
the collaboration and to restrain the emergence of new ones.

Nevertheless, our model enabled the TCU to adopt DevOps in a more sustainable way.
Knowing the role of each DevOps element in the adoption was fundamental for the TCU to
avoid points of failure and to build a collaborative environment that supports the exploration
of DevOps benefits.

24

6.3. Assessment of our DevOps Adoption Model

To reduce the bias of our perception about the scenario of adopting DevOps at TCU, we
conducted a Focus Group with four professionals of the company for an empirical evaluation
of their perception about DevOps adoption.

The focus group at TCU lasted approximately 3 hours and was attended by four profes-
sionals, two of each development and operations team. The participants’ profile is described
in Table 5.

P# Team Educational
background

Experience

P1 Dev Graduate 3 years in dev team at TCU and
9 years of previous experience

P2 Dev Posgraduate 6 years in dev team at TCU and
7 years of previous experience

P3 Ops Graduate 3 years in ops team at TCU and
8 years of previous experience

P4 Ops Graduate 3 years in ops team at TCU and
10 years of previous experience

Table 5: Focus Group Participants

We approached three discussion topics during the focus group. These topics are listed
in Table 6 and its results are presented in the remaining of this section.

6.3.1. Current Status of DevOps Adoption at TCU

The first action indicated and discussed in the group was the provision of environ-
ments (Virtual Machines, VM for short) for the installation of tools that are related to the
development work. This action was exemplified by the successful installations of the Elas-
ticsearch2 and Kafka3 tools. The previously existing problem was that when a developer
had a need of tools like these, he/she would have to open a request for the operations team
to provide it—with very long deadlines that often make the use of the most adequate solu-
tion unfeasible. With VM provisioning and cooperation between the two teams, these tools
became available quickly for use and the responsibility for its management is joint. This is
a clear example of application of the concepts of software development empowerment
and shared responsibility of the core category collaborative culture .

Next, the use of microservices and containers as environment to run them was de-
bated. The first problem that this action solved, in the participants’ understanding, was the
previous lack of parity between the environments (development, test, staging and produc-
tion). The recurring problems of applications that worked in a development environment

2https://www.elastic.co/
3https://kafka.apache.org/

25

Topic Questions

1 Current status of
DevOps adoption
at TCU

1. What actions developed in the TCU do you consider
to be part of DevOps adoption?

2. What previously existing problems have been
solved by these actions?

2 Applicability and
utility of the pro-
posed model

1. Do you consider that the proposed model has
contributed to DevOps adoption at TCU?

2. If so, what are the main contributions?
3 Challenges faced

and next steps in
DevOps adoption

1. What are the main challenges that TCU currently
faces in DevOps adoption?

2. What are the next steps in DevOps adoption
at TCU?

Table 6: Focus Group Topics

but which had problems in production were recalled, which was solved with the use of con-
tainers. In this context, the use of tools like Docker4 and Kubernetes5 was discussed as
means of providing configuration details of the environments in the applications source code
repositories themselves. This enabled both development and operations teams to get a first
idea of the running environment of each application in a more transparent way. Finally,
the use of containers and related tools also enabled the use of mechanisms for horizontal
scalability, high availability and publication of applications without down-time, solving a
recurring problem of interrupting the work of business teams during the deployment of the
applications. Here, it is possible to identify several concepts of our theory, such as: (1) parity
between environments, (2) infrastructure provisioning automation, (3) autonomous services,
(4) containerization, (5) auto scaling, (6) recovery automation and (7) zero down-time.

The third discussed point was the reduction of bureaucracy in communication be-
tween the teams. It was pointed out that although there is still much room for progress, this
can already be considered as one of the advances of the TCU related to DevOps adoption.
During the discussion, the ceremonious communication process in the scope of the deploy-
ment SLA was recalled. There is a current guideline to avoid using service-desk for simple
problem solving. The problems had to be solved in a collaborative way, preferably face
to face and the use of the Slack tool has been institutionalized and facilitated the contact
between the two teams. We highlight the concept straightforward communication of
the collaborative culture category as part of this point of discussion.

Then, the use of multidisciplinary pipelines in the most recent applications of TCU

4https://www.docker.com/
5https://kubernetes.io

26

was pointed out and debated. These pipelines involve everything from the build, through
automated tests and static analysis of source code, execution of containers using Kubernetes
and publication isonomically in the different environments (development, staging and pro-
duction). Jenkins is used as a tool to describe and execute the pipelines. One single trigger
execute a set of steps that previously required several comings and goings between the teams
and a long time to complete. The group agreed that the construction of multidisciplinary and
collaboratively produced and maintained pipelines like these ones is only possible when the
collaborative culture is fostered. This point of discussion refers to a few more concepts:
(1) operations in day-to-day development, (2) test automation, (3) deployment automation,
(4) shared pipelines, (5) continuous integration, (6) continuous infrastructure provisioning,
(7) continuous deployment, (8) continuous testing and (9) source code static analysis.

Automated Database Migrations was the next point considered as part of DevOps
adoption. The participants explored the differences between the previous scenario — where
changes in the database structure of an application needed to be made according to an SLA
and, therefore, requested through service-desk — and the new one where the Flyway6 tool
is used to manage database migrations. The use of these type of tool had previously been
discarded because the operations team could not provide the database owner password. This
discussion was retaken recently, and the teams jointly developed a solution to safely share the
owner password. This discussion reinforces two aspects of the collaborative culture that
are the confidence and the collaboration between the teams. The concept of infrastructure
management automation was present here.

Finally, the last point considered by the group as part of DevOps adoption was one more
solution built in a collaborative way for continuously and automated monitoring of
application errors. Previously, a simple access to an application’s log needed to be requested
through the service-desk. The solution automatically collects the logs, searches for errors
in its content, and, in case of errors, sends messages through Slack to both teams. We can
find the application of two other concepts: (1) monitoring automation and (2) application
log monitoring.

6.3.2. Applicability and Utility of the Proposed Model

All participants of the focus group agreed that the proposed model has great utility
in DevOps adoption at TCU. They remembered that most of the actions discussed in the
previous topic were direct result of the model development and, therefore, its application
is already being effective and producing results in expanding DevOps usage throughout the
development of TCU’ enterprise applications. The following are the two main benefits of
model usage, discussed in the focus group:

DevOps Institutional Understanding: In response to the question about the model
contributions to TCU, initially it was pointed out that, during the initial attempts with
consultant firms, it was clear that the mere use of tools did not bring the teams closer to-
gether. Some developers acted as if DevOps had given them permission to ignore operations

6https://flywaydb.org/

27

team’ procedures. The operations team, on the other hand, was overly concerned in for-
mally delimit the administration responsibilities to each used tool. The discussion showed
that they all agreed that fostering a collaborative culture was not taken into account be-
fore. Throughout the model, the DevOps adoption in well succeeded scenarios goes mainly
through this point, has made possible a change in teams posture about collaboration.

Subsequently, a post-it note about the “wide range of practices and experiences” present
in the model was discussed. It was once again recalled that several practices have already
been implemented using as input industry experiences collected during model production.
The model has also been pointed out as a tool for evaluating practices that the TCU does
not yet adopt, providing a road map to guide next steps.

Industry Experiences: Finally, it was emphasized that the model was built taking
into account successful industry experiences and this represents great value for the TCU. In
the group’s understanding, although the TCU possesses many governmental environments
peculiarities, the search for technological innovation is part of its strategic map, and cannot
be achieved by looking only at scenarios similar to the current one. It was emphasized that
the industry is an important player in the definition of new technologies that, adapted to
a greater or lesser degree, may be fully applicable to government agencies, such as TCU.
According to the formed understanding, the fact that this model, built upon industry ex-
periences, is already being effectively applied, is one more confirmation that government
agencies can effectively innovate following industry tendencies.

6.3.3. Challenges Faced and Next Steps in DevOps Adoption

The discussions of the last focus group topic focused on identifying the challenges faced
during the evolution of DevOps usage at TCU, as well as the next steps to overcome the
challenges and institutionalize DevOps as a software development approach.

DevOps Internal Understanding Maturity: It was initially debated the perception
pointed out by one of the participants that there is still a lot of hype around what would be
DevOps adoption. According to him, some developers still thinking that DevOps allows them
to take technical initiatives without consulting other professionals, and that some operations
people still do not feel comfortable with this paradigm shift because they understand that
DevOps can cause disorganization in an environment that already had stability. It was
mentioned that the model helps to deal with this challenge, but that a permanent effort is
needed to foment the collaboration between the teams, avoiding someone to leave wanting
to solve everything according to personal convictions.

It was also pointed out as a challenge, the difficulty of disseminating knowledge related
to new tools and processes that came along with DevOps adoption. Actions to mitigate this
challenge have been discussed, including the expansion of internal lectures, participation in
events such as DevOpsDays, and the stimuli that the TCU already offers to its professionals,
such as training license, refund of training, and availability of one online training platform.
In this sense, it was understood that one of the next steps is the expansion of the technical
capacity of the professionals in themes related to the modernization of tools and processes.

Information Security: Here, the group discussed that DevOps adoption has consid-
erably increased the TCU’s surface of technological vulnerabilities. It was pointed out that

28

the operations team is very concerned about information security, and that its professionals
are evaluating the implemented tools and will propose modifications. The participants then
aligned that this debate cannot be only on the operations team, as this is a manifestation
of collaboration lack.

The P2 then suggested that these concerns extend the scope from DevOps to a De-
vSecOps context, when security activities are also integrated into the development process.
There is then a further step, which is to extend the DevSecOps perspective.

Metrics Collection in Applications: In this part of the discussion, the participants
discussed that the current continuous monitoring solution is restricted to application errors,
and that the model contains ideas about collecting metrics in applications to foster business
decisions and applications evolutions. The P4 pointed out that the same solution can be
extended as long as the applications were instrumented to generate logs of any other metrics.
Therefore, the continued collection of other application metrics has been pointed out as one
of the next steps in adopting DevOps at TCU.

Regulatory Issues: Here, the group understood that, although the model has made it
possible to understand that the most important thing is to foster the collaborative culture ,
many professionals still thinking in a legalistic perspective, and the internal regulations
about the TCU’ organizational structure establish that the responsibilities for issues related
to the application infrastructure are from its operations team, which makes it difficult to
consolidate a sense of shared responsibility.

There was no consensus about the best solution to resolve the constraints contained
in organizational structuring regulations. Some (P1 and P4) understand that it would be
appropriate part of the operations team to be transferred to development sector. Others (P2
and P3) have demonstrated the understanding that a change in the regulations is enough
to define that there is shared responsibility for issues related to application infrastructure.
There is a working group constituted in order to propose modifications in the regulations to
adjust these assignments to the DevOps scenario.

Physical Distancing of Teams: The last challenge discussed during the focus group
was the existence of separate rooms for the development and operations teams. Physical
distance has been put as a factor that hinders the communication and the developing of
the collaborative culture . The participants agreed that the physical approximation of
the teams involves questions related to restructuring regulations, as discussed above. If the
operations team is incorporated into the development team, the approximation is likely to
occur, otherwise it is necessary to seek another viable solution.

6.3.4. General Considerations

Even though it was not the only point of debate, considerations about the model perme-
ated all the discussed topics, practical actions were highlighted that only materialized due
to the exchange of experiences that occurred during this research. Many of the concepts
presented in the model were visualized during focus group discussions, this is not a mere
coincidence and emphasizes that our model is guiding, in a high level of abstraction, the
actions of the TCU toward DevOps adoption. In addition, it was possible to note a pre-
viously non-existent concern about the collaborative culture , the participants frequently

29

placed their actions as part of the efforts to foster the collaborative culture . Altogether,
the results of the focus group allow us to answer our second research question (RQ2) How
does our model contribute to the adoption of DevOps on a specific scenario?

(RQ2) Answer: The DevOps adoption model changed the focus from automation
to a collaborative culture , during the TCU experience on DevOps adoption. This
changing has reduced the distance between both teams (development and operations)
and eliminated mechanisms (such as ticket systems) that actually decrease the perfor-
mance of the teams. In addition, the set of perceptions from practitioners, in which
our model builds upon, is guiding the decisions on the adoption process at TCU.

7. Threats to Validity

Regarding construct validity, we are actually relying on the subjective practitioners’
perception when we stated that we performed our study considering successful cases of
DevOps adoptions. However, currently, there is no objective way to measure whether or not
a DevOps adoption was successful. Although Grounded Theory offers rigorous procedures for
data analysis, our qualitative research may contain some degree of research bias. Certainly,
other researchers might form a different interpretation and theory after analyzing the same
data, but we believe that the main perceptions would be preserved. This is a typical threat
related to GT studies, which do not claim to generate definitive findings. The resulting
theory, for instance, might be different in other contexts [34].

For this reason, we do not claim that our theory is absolute or final. We welcome
extensions to the theory based on unseen aspects or finer details of the present categories
or potential discovery of new dimensions from future studies. Future work can also focus
on investigating contexts where DevOps adoption did not succeed, aiming to validate if our
model could be relevant in this scenario too. Finally, regarding external validity, although we
considered in our study the point of view of practitioners with different backgrounds, working
in companies from different domains, and distributed across five countries, we do not claim
that our results are valid for other scenarios—although we almost achieved saturation after
the 12th interview. Accordingly, our degree of heterogeneity complement previous studies
that mostly focus in a single company (as we will discuss next).

The focus group was moderated by one of the researchers, the participants were ar-
bitrarily invited, without a general call, and they are co-workers of one of the researchers.
Although they were chosen arbitrarily, the choice was made precisely by the prior knowledge
of which professionals were directly involved in DevOps adoption at TCU. To mitigate this
threat, the participants were informed the purpose of the group was to obtain an evaluation
of the DevOps adoption as a whole and that they had total freedom to expose their real
opinions, whether they were favorable or not to the implanted model.

8. Related Work

The research literature is particularly rich when it comes to DevOps-related works
(e.g., [1, 3, 10]). In a literature review, Erich et al. [9] presents 8 main concepts related

30

to DevOps: culture, automation, measurement, sharing, services, quality assurance, struc-
tures and standards. The authors pointed out that the first four concepts are related to
the CAMS framework, proposed by Willis [35]. The paper concludes that there is a great
opportunity for empirical researchers to study organizations experimenting with DevOps.
Other studies (e.g., [1, 2, 3, 4, 10]) mixed literature reviews with empirical data to investigate
DevOps. Although our research and recent literate are interested in understanding DevOps,
there are subtle differences in both (1) the methodological aspects and (2) the focus of each
work.

First of all, none of the aforementioned works focused on explaining the process of Dev-
Ops adoption, in particular, using data collected in the industry. This is unfortunate, since
the practitioners’ perception present an unique point of view that researchers alone could
hardly grasp. Moreover, although the literature has a number of useful elements, there is
a need to complement such elements with a perspective on how DevOps has been adopted,
containing guidance about how to connect all these isolated parts and then enabling new
candidates to adopt DevOps in a more consistent way. For instance, the work of Erich et
al. [10] focus on investigating the ways in which organizations implement DevOps. How-
ever, this work relies only in literature review and does not formulate new hypothesis about
DevOps adoption. Second, in terms of results, our main distinct contribution is to improve
the guidance to new practitioners in DevOps adoption. Next, we present the overlappings
of our results with the existing literature, presenting also the main differences that make the
contributions of our work clearer.

The work of Smeds et al. [1] uses a literature review to produce one explanation about
DevOps through a set of enablers and capabilities. Additionally, their results present a
set of impediments of DevOps adoption based on an interview with 13 subjects of a same
company, and whose DevOps adoption process was at an initial stage. The main similarities
with our study are: (1) grouping elements as DevOps enablers; and (2) the presence of
several similar concepts: (a) testing, deploying, monitoring, recovering and infrastructure
automation; (b) continuous integration, testing and deployment; (c) service failure recovery
without delay; and (d) constant, effortless communication. The main differences are: (1)
their work does not group concepts into categories, for example: most of their enablers were
grouped together by us within the automation category; (2) presents cultural enablers as
common contributor to DevOps, not as the most important concern; and (3) the empirical
part of the study focus on building a list of possible impediments to DevOps adoption, not
on providing guidance to new adopters.

In the study of Lwakatare et al. [2], the authors aimed at characterizing the and formalize
what DevOps is about. Through a sequence of interviews, the authors observed the need
of four dimensions to compose DevOps, including collaboration, automation, measurement,
and monitoring. In a follow up study, Lwakatare et al. [3] proposed a conceptual framework
to explain “DevOps as a phenomenon”. The framework is organized around five dimensions
(collaboration, automation, culture, monitoring and measurement) and these dimensions are
presented with related practices. These two works have good similarities with our study.
For instance, all aforementioned dimensions are also presented here. The main differences
are: (1) collaboration and culture are presented by us as a single abstraction; (2) Concepts

31

related to monitoring and measurement are grouped by us in a single category: continuous
measurement ; and (3) it does not indicate a major dimension (aka, the core category).
Moreover, our work greatly expand the notion of DevOps, proposing a theory for adoption,
and indeed applying this theory in a real setting.

França et al. [4] present a DevOps explanation produced by means of a multivocal liter-
ature review. The data was collected from multiple sources, including gray literature, and
analyzed by using procedures from GT. The results contain a set of DevOps principles, where
there is most of the overlapping with our study. In addition, the paper presents a definition
to DevOps, issues motivating its adoption, required skills, potential benefits and challenges
of adopting DevOps. The main similarities are: (1) Automation, sharing, measurement and
quality assurance are presented as DevOps categories; and (2) Their social aspects category
is similar to our collaborative culture category. The main differences are: (1) it presents
DevOps as a set of principles, different from enablers and outcomes in our study; and (2)
the Leanness category is not present in our study and the resilience category is not present
in theirs; and (3) it does not indicate a core category.

The study conducted by Erich et al. [10], similarly to the others cited above, combined
literature review with some interviews with practitioners. In the literature review part, the
papers were labeled and the similar labels are grouped. The 7 top labels are then presented
as elements of DevOps usage in literature: culture of collaboration, automation, measure-
ment, sharing, services, quality assurance and governance. After the literature review, six
interviews were conducted in order to obtain evidence of DevOps adoption in practice. The
interviews were analyzed individually and a comparison between them was made, focusing
on problems that organizations try to solve by implementing DevOps, problems encountered
when implementing DevOps and practices that are considered part of DevOps. The main
similarity with our study is that 5 of their 7 groups are also present in our study (culture
of collaboration, automation, measurement, sharing and quality assurance). The main dif-
ferences are: (1) it does not consolidate the practitioners’ perspective, but only compare it
with literature review results; and (3) it does not indicate a major group.

Finally, the work of Vergori and colleages [36], the authors proposed a set of metrics
related to DevOps performance, such as expected task completion rate, expected finishing
time, and the proportion of time doing dev or ops activities. Although some of the metrics
proposed are reasonable straightforward to measure (e.g., the task completion rate), some
other are not so easy. In this work, the authors used the Phoenix project [37], which is a
case of industrial DevOps adoption. In terms of similarities to our work, both works focus
on improving DevOps experience. While we focus on DevOps adoption, their work focus on
DevOps performance.

In comparison with our previous paper [11], here we advance further in exploring real
scenarios of DevOps usage. The TCU scenario was described in details through the results of
the focus group. Besides that, we present a more detailed explanation about the application
of our model, highlighting each step and presenting some numbers.

32

9. Final Remarks

In this paper, grounded in data collected from successfully DevOps adoption experiences,
we present a theory on DevOps adoption, a model of how to adopt DevOps according to
this theory, and a case of applying it in practice.

We found out that the DevOps adoption involves a very specific relationship between
seven categories: agility , automation , collaborative culture , continuous measure-
ment , quality assurance , resilience , sharing and transparency . The core category
of DevOps adoption is the collaborative culture . Some of the identified categories (i.e.,
automation and sharing and transparency) propitiate the foundation of a collaborative
culture . Other categories (i.e., agility and resilience) are expected consequences of this for-
mation. Finally, two other categories (i.e., continuous measurement and quality assurance)
work as both foundations and consequences. We call the foundations categories “DevOps
enablers”, and the consequences categories “DevOps outcomes”. Crucially, this model sim-
plifies the understanding of the complex set of elements that are part of DevOps adoption,
enabling it to be more direct and to offer a lower risk of focusing on wrong things. We
experimented with this model in real settings, improving the benefits of adopting DevOps
within a government institution that faced many problems with the separation between the
development and operations teams.

Now that we have our theory, our model, and an initial instantiation of this model in
practice, we expect further research explorations. First, we believe that our model could
help practitioners that are willing to migrate to a DevOps landscape, but are unsure about
how to start. Moreover, our model can provide initial light on the chances that are needed
to a company achieve DevOps. For instance, if a company has already a good notion of
the enablers of its context, it may suggest that the DevOps adoption could be done more
smoothly. Our model and our experience can be seen as an initial guideline in this direction.
As a consequence, we expect further instantions in other software companies. These other
instantiations are valuable to understand the limits and challenges of our current model,
that would only become clear when exercized in different environments, under different
time, cost, or personel constraints. In our own research agenda, we plan to propose a list
of key performance indicators to assess the success of the DevOps transition. In particular,
one question that might be worth investigating is how to measure the impact of DevOps.

References

[1] J. Smeds, K. Nybom, I. Porres, DevOps: A definition and perceived adoption impediments, in: C. Lasse-
nius, T. Dingsøyr, M. Paasivaara (Eds.), Agile Processes in Software Engineering and Extreme Pro-
gramming, Springer International Publishing, Cham, 2015, pp. 166–177.

[2] L. E. Lwakatare, P. Kuvaja, M. Oivo, Dimensions of DevOps, in: C. Lassenius, T. Dingsøyr, M. Paa-
sivaara (Eds.), Agile Processes in Software Engineering and Extreme Programming, Springer Interna-
tional Publishing, Cham, 2015, pp. 212–217.

[3] L. E. Lwakatare, P. Kuvaja, M. Oivo, An exploratory study of DevOps extending the dimensions of
DevOps with practices, ICSEA’16, 2016, pp. 91–99.

[4] B. B. N. de França, H. Jeronimo, Junior, G. H. Travassos, Characterizing DevOps by hearing multiple
voices, in: Proceedings of the 30th Brazilian Symposium on Software Engineering, SBES ’16, ACM,

33

New York, NY, USA, 2016, pp. 53–62. doi:10.1145/2973839.2973845.
URL http://doi.acm.org/10.1145/2973839.2973845

[5] M. Httermann, DevOps for developers, Apress, 2012.
[6] J. Allspaw, P. Hammond, 10+ deploys per day: Dev and ops cooperation at flickr, talk presented at

Velocity: Web Performance and Operations Conference (2009).
[7] P. Labs, DevOps Research, D. Assessment, 2017 state of DevOps report, Tech. rep., retrieved May,

2018 from https://puppet.com/resources/whitepaper/state-of-devops-report (2018).
[8] L. Riungu-Kalliosaari, S. Mäkinen, L. E. Lwakatare, J. Tiihonen, T. Männistö, Devops adoption bene-

fits and challenges in practice: A case study, in: P. Abrahamsson, A. Jedlitschka, A. Nguyen Duc,
M. Felderer, S. Amasaki, T. Mikkonen (Eds.), Product-Focused Software Process Improvement,
Springer International Publishing, Cham, 2016, pp. 590–597.

[9] F. Erich, C. Amrit, M. Daneva, Cooperation between information system development and operations:
A literature review, in: Proceedings of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM ’14, ACM, New York, NY, USA, 2014, pp. 69:1–69:1.
doi:10.1145/2652524.2652598.
URL http://doi.acm.org/10.1145/2652524.2652598

[10] F. M. A. Erich, C. Amrit, M. Daneva, A qualitative study of DevOps usage in practice, J. Softw. Evol.
Process 29 (6) (2017) n/a–n/a. doi:10.1002/smr.1885.
URL https://doi.org/10.1002/smr.1885

[11] W. P. Luz, G. Pinto, R. Bonifácio, Building a collaborative culture: a grounded theory of well succeeded
DevOps adoption in practice, in: Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM 2018, Oulu, Finland, October 11-12, 2018,
2018, pp. 6:1–6:10.

[12] B. Kromhout, Containers will not fix your broken culture (and other hard truths), Queue 15 (6) (2017)
50:46–50:56.

[13] D. I. K. Sjøberg, T. Dyb̊a, B. C. D. Anda, J. E. Hannay, Building Theories in Software Engineering,
Springer London, London, 2008, pp. 312–336.

[14] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, A. Wessln, Experimentation in Software
Engineering, Springer Publishing Company, Incorporated, 2012.

[15] B. G. Glaser, A. L. Strauss, The Discovery of Grounded Theory: Strategies for Qualitative Research,
Observations (Chicago, Ill.), Aldine Publishing Company, 1967.

[16] G. Coleman, R. O’Connor, Using grounded theory to understand software process improvement: A
study of irish software product companies, Information and Software Technology 49 (6) (2007) 654–
667.

[17] K. Charmaz, Discovering chronic illness: using grounded theory, Social science & medicine 30 (11)
(1990) 1161–1172.

[18] J. H. Barnsteiner, Using grounded theory in nursing, Journal of Advanced Nursing 40 (3) (2002) 370–
370.

[19] S. A. Hutchinson, Education and grounded theory, Journal of Thought (1986) 50–68.
[20] G. Kenealy, Management research and grounded theory: A review of grounded theory building approach

in organisational and management research, The Grounded Theory Review 7 (2) (2008) 95–117.
[21] R. Hoda, J. Noble, Becoming agile: A grounded theory of agile transitions in practice, in: Proceedings

of the 39th International Conference on Software Engineering, ICSE ’17, IEEE Press, Piscataway, NJ,
USA, 2017, pp. 141–151. doi:10.1109/ICSE.2017.21.
URL https://doi.org/10.1109/ICSE.2017.21

[22] K.-J. Stol, P. Ralph, B. Fitzgerald, Grounded theory in software engineering research: A critical review
and guidelines, in: Proceedings of the 38th International Conference on Software Engineering, ICSE
’16, ACM, New York, NY, USA, 2016, pp. 120–131. doi:10.1145/2884781.2884833.
URL http://doi.acm.org/10.1145/2884781.2884833

[23] S. Adolph, W. Hall, P. Kruchten, Using grounded theory to study the experience of software develop-
ment, Empirical Software Engineering 16 (4) (2011) 487–513.

34

[24] N. K. Denzin, Grounded theory and the politics of interpretation, The Sage handbook of grounded
theory (2007) 454–471.

[25] S. Jantunen, D. C. Gause, Using a grounded theory approach for exploring software product manage-
ment challenges, Journal of Systems and Software 95 (2014) 32–51.

[26] R. Hoda, J. Noble, S. Marshall, The impact of inadequate customer collaboration on self-organizing
agile teams, Information and Software Technology 53 (5) (2011) 521–534.

[27] S. Adolph, P. Kruchten, W. Hall, Reconciling perspectives: A grounded theory of how people manage
the process of software development, Journal of Systems and Software 85 (6) (2012) 1269–1286.

[28] S. Georgieva, G. Allan, Best practices in project management through a grounded theory lens., Elec-
tronic Journal of Business Research Methods 6 (1) (2008) 43–52.

[29] F. Shull, J. Singer, D. I. Sjøberg, Guide to advanced empirical software engineering, Springer, 2007.
[30] D. L. Morgan, Focus groups, Annual review of sociology 22 (1) (1996) 129–152.
[31] L. Lehtola, M. Kauppinen, S. Kujala, Requirements prioritization challenges in practice, in: F. Bo-

marius, H. Iida (Eds.), Product Focused Software Process Improvement, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004, pp. 497–508.

[32] W. Luz, E. Agilar, M. C. de Oliveira, C. E. R. de Melo, G. Pinto, R. Bonifácio, An experience report on
the adoption of microservices in three brazilian government institutions, in: Proceedings of the XXXII
Brazilian Symposium on Software Engineering, SBES ’18, 2018, pp. 32–41.

[33] J. Lewis, F. Martin, Microsservices, http://martinfowler.com/articles/microservices.html, ac-
cessed: 2018-05-22 (2014).

[34] R. Hoda, J. Noble, S. Marshall, Developing a grounded theory to explain the practices of self-organizing
agile teams, Empirical Software Engineering 17 (6) (2012) 609–639.

[35] J. Willis, What DevOps means to me, retrieved from https://blog.chef.io/2010/07/16/what-devops-means-to-me/

(2010).
[36] G. Vergori, D. A. Tamburri, D. Perez-Palacin, R. Mirandola, Devops performance engineering: A

quasi-ethnographical study, in: Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering Companion, ICPE ’17 Companion, 2017, pp. 127–132.

[37] G. Kim, K. Behr, G. Spafford, The Phoenix Project: A Novel About IT, DevOps, and Helping Your
Business Win, 1st Edition, IT Revolution Press, 2013.

35

