
A Multi-Objective Genetic Algorithm to Test Data Generation

Gustavo H.L. Pinto, Silvia R. Vergilio
Federal University of Paraná

Computer Science Department

CP: 19081, Centro Politecnico CEP: 81531-970

Jardim das Américas - Curitiba, Brazil

gustavo@inf.ufpr.br, silvia@inf.ufpr.br.

Abstract

Evolutionary testing has successfully applied search
based optimization algorithms to the test data generation
problem. The existing works use different techniques and
fitness functions. However, the used functions consider only
one objective, which is, in general, related to the cover-
age of a testing criterion. But, in practice, there are many
factors that can influence the generation of test data, such
as memory consumption, execution time, revealed faults,
and etc. Considering this fact, this work explores a multi-
objective optimization approach for test data generation.
A framework that implements a multi-objective genetic al-
gorithm is described. Two different representations for the
population are used, which allows the test of procedural and
object-oriented code. Combinations of three objectives are
experimentally evaluated: coverage of structural test crite-
ria, ability to reveal faults, and execution time.

1 Introduction

The test data generation to satisfy a test criterion is as-
sociated to several limitations, and it can not be completely
automated. Because of this, this task usually consumes a lot
of effort. Given a criterion C, there is no algorithm to deter-
mine whether a test set T is C-adequate, that is, whether T
satisfies C, covering all the elements required by C. There is
no algorithm even to determine whether such set exists [11].

Due to this fact, the task of test data generation is an
open research question. Approaches based on search based
algorithms, such as Genetic Algorithms, present promis-
ing results, and were grouped in a area, called Evolu-
tionary Testing [32]. The works on this subject differ
on the search based technique and on the fitness func-
tion used. Most of them are coverage oriented, address-
ing structural and fault based criteria applied to procedural

code [10, 16, 21, 32]. The context of object-oriented pro-
grams is a more recent research field with a reduced number
of works [25, 26, 27, 28, 31].

A limitation of these existing works is that they formu-
late the test generation problem as a single objective search
problem, which is, in general, the coverage of a path (or re-
quired element). However, there are diverse characteristics
desired for the test data that should be considered to guide
the generation task, such as: ability to reveal certain kind
of faults, reduced execution time and memory consump-
tion, and other factors associated to the development en-
vironment that can be related to the type of software being
developed.

In this way, we notice that the test data generation prob-
lem is in fact multi-objective, since it can depend on mul-
tiple variables (objectives). For such problems there is no
a single solution that satisfies all the objectives. This is be-
cause the objective can be in conflict, for example, coverage
and execution time.

Considering this fact, this work explores a new multi-
objective approach for test data generation. A multi-
objective search based framework is described that uses two
representations for the test data to allow the test of pro-
cedural and object-oriented code, and the integration with
the testing tools: Poketool [19], and JaBUTi [30]. The
framework implements the NSGA-II (Non-dominated Sort-
ing Genetic Algorithm) algorithm [7], a multi-objective ge-
netic algorithm that evaluates the solutions according to
Pareto dominance concepts [23] considering different ob-
jectives: coverage of a chosen structural criterion, execution
time, and ability to reveal faults. Some experimental results
of three case studies show that the implemented algorithm
produces a set of solutions that represent a good trade off
between the objectives to be satisfied by the test data gener-
ated.

The rest of the paper is organized as follows. Section 2
introduces the framework and implemented algorithm. Sec-
tion 3 presents experimental evaluation results. Section 4

describes related work. Finally, in Section 5 we conclude
the paper and present the main contributions of the work.

2 Test Data Generation by a Multi-objective
Approach

This section introduces an approach that formulates the
test data generation as a multi-objective problem. In fact,
diverse factors should be considered to select a test data.
For example: to maximize the coverage of a test criterion
and the ability to reveal faults; to minimize the execution
time and memory consumption; to minimize the size either
of the test data or of the test set.

To consider this multi-influence in the test data genera-
tion, it was developed a framework that implements a multi-
objective genetic algorithm, NSGA-II, a modification of the
original NSGA proposed by Deb [7]. The framework is in-
tegrated to the testing tools Poketool [19] and JaBUTi [30].
It generates test data to satisfy the structural criteria based
on control and data flow, and supported by the tools, re-
spectively for the test of C and Java programs. The fitness
function can be based in a combination of the three follow-
ing objectives: coverage of a given criterion, execution time
and ability to reveal faults. The solutions are evaluated ac-
cording to the Pareto dominance concepts.

2.1 The Framework

The framework has three modules: i) brainModule; ii)
testingModule, that controls the integrated testing tools; and
iii) configModule, that receives the configuration of param-
eters from the users. The communication among the mod-
ules is illustrated in Figure 1. The parameters provided by
the tester are received (‘a’), and formatted by the config-
Module (‘b’). The brainModule implements the NSGA-II
algorithm and is responsible by the evolution process. The
test data sets are passed to the testingModule (‘c’), which is
responsible for the transformation of the data according to
the format used by the integrated tools. After the execution
and evaluation of the test data by the tools, the testingMod-
ule returns information about the coverage (‘d’) to allow the
evolution of the population.

2.2 ConfigModule

The configModule needs the following parameters: a) in-
formation related to the evolution process: maximum num-
ber of generations or maximum execution time; crossover,
mutation and relation rates (related to the application of the
genetic operators); number of individuals in the population;
b) information to generate the population: number of test
data in each individual, type of the input variables or num-
ber maximum of methods calls; c) objectives to be used in

Figure 1. Modules of the framework

the fitness evaluation; d) information about the test tools:
language and chosen test criterion.

2.3 BrainModule

The brainModule is responsible for the: initial genera-
tion of the individuals that are test data sets, evolution of
the population by the application of the genetic algorithms
and the fitness evaluation. It implements the multi-objective
algorithm. Important implementation aspects of any meta-
heuristic algorithm are: the representation of the population
and the choice of the fitness function, which are presented
next.

2.3.1 Representation of the population

Works on search based test, in general, represents the in-
put data as an individual of the population. However, in
this work the individual represents a set of test data to be
evolved. The maximum size of such set is determined by
the tester. This structure is presented in Figure 2, in which
the individual is composed byn test data. With this repre-
sentation different solutions can be explored in the search
space, and in the future, the size of the set can be an objec-
tive to be minimized.

Figure 2. An individual in the population

Two possible representations for the test data in each in-
dividual can be used, depending on the chosen language and
tool, representing test data for either procedural or object-
oriented programs. In the procedural context, the input con-
sists in a sequence of values to execute the program. The
type and number of the values are fixed and provided by test
and vary according to the program being tested. Because of
this, the codification of the input is simple.

In the context of object-oriented code, however, the test
data is not a simple sequence of values. It contains se-

quences of invocations to constructors and methods, in-
cluding the correspondent parameters. To represent each
test data, the framework used the following grammar, intro-
duced by Tonella [28]:

<chromosome> ::= <actions> @ <values>
<actions> ::= <action> {: <actions>}?
<action> ::= $id = constructor ({<parameters>}?)

| $id = class # null
| $id . method ({<parameters>?)

<parameters> ::= <parameter> {, <parameters>}?
<parameter> ::= builtin-type {<generator>}?

| $id
<generator> ::= [low ; up]

| [genClass]
<values> ::= <value> {, <values>}?
<value> ::= integer

| real
| boolean
| string

The test data is composed by two parts, separated by the
character ‘@’. The first part, the non-terminal<actions>
contains a sequence of constructors and methods invoca-
tions, separated by ‘:’.

Each<action> can either construct a new object, as-
signed to a variable $id, or result in a method invocation.
A special case involves the value null, that corresponds to
a reference for a non existing object (if no constructor for
this object is invoked). The value null is preceded by the
class of $id (separated by the character ‘#’) and can be used
as a parameter only if its type matches to that of the formal
parameter. Parameters of the methods and constructors are
primitive types of the language such as int, real, boolean or
a variable $id. The second part of the chromosome contains
input values (parameters) used in each invocation, separated
by the character ‘,’.

Examples of test data for the program TriTyp.java are
presented below. This program receives three integer values
and checks if the values correspond to a triangle. In the
affirmative case the programs returns the type of triangle
formed. The program has six public methods: setI(), setJ(),
setK(), type(), equals() e toString(). In the examples, the
methods invocations are separated by ‘:’. The first one is
the constructor. After ‘@’ we find the parameters to each
method.

2.3.2 Genetic operators

The genetic operators transform the population through suc-
cessive generations and help to maintain diversity and adap-
tation characteristics obtained by the solutions of previous
generations. In the context of procedural code, the operators
are applied by considering the type of each provided input.
Some examples are presented in Table 1. If the values are
integer they can be summed or subtracted to compose an-
other test data.

The mutation occurs according to a probability. In such
case, a new value is generated considered the type of the

Table 1. Illustrating crossover in C programs

parent 1 parent 2 descendent 1 descendent 2
W Ol8AS+Jj UvHW]BYYMO W Ol8B | YYMO UvHW] | AS+Jj
K0?y-n UnZ XJc_Is.OO) K0?yI | s.OO) XJc_I | OOUnZ

-7093 -4950 -12043 -2143
+4899 -7968 -3069 +12867

input value. Duplicate test data in the individual are elimi-
nated.

In the context of object-oriented programs, the operators
are applied as follows. The mutation operator changes, in-
serts or removes inputs, constructors and methods invoca-
tions. For example, the test data:

$t= TriTyp():$t.setI(int):$t.setJ(int):$t.type() @ 9, 3

can be changed by:

$t=TriTyp():$t.setI(int):$t.setJ(int):$t.type() @ 6, 3
$t=TriTyp():$t.setJ(int):$t.type() @ 3

The crossover operator selects points that can be in the
sequence of methods invocations or in the part that contains
the parameters. For example:

Parents:

$t=TriTyp():$t.setI(int):$t.setJ(int):$t.setK(int) @ 9, 3, 8
$t=TriTyp():$t.setI(int):$t.setJ(int):$t.setK(int) @ 4, 1, 4

Descendents:

$t=TriTyp():$t.setI(int):$t.setJ(int):$t.setK(int) @ 1, 3, 8
$t=TriTyp():$t.setI(int):$t.setJ(int):$t.setK(int) @ 4, 9, 4

The operators of relation change test data between indi-
viduals to ensure diversity. They apply: half relation and
random relation. Consider the initial sets A = {a, b, c, d, e,
f} and B = {g, h, i, j, k, l}. The operator ofhalf relation
derives two new sets. The first one containing the first half
of A and the second half of B. The second one containing
the remaining parts of A and B. The following sets are gen-
erated:HRi = {a, b, c, j, k, l} andHRii = {g, h, i, d, e,
f}.

The operatorRandom relationrandomly selects index
for the elements that will be changed. For example, for the
random values 3, 4 e 6, corresponding to the indexes of the
elements in A and B, the following sets are obtained:RRi

= {a, b, i, j, e, l} andRRii = {g, h, c, d, k, f}.

2.3.3 Fitness Evaluation

Each individual can be evaluated according two or more ob-
jectives chosen by the tester. In this version of the frame-
work, three functions are available.

• Coverage of a structural criterion: the tester can choose
a criterion implemented by the integrated tools. The
first one, Poketool, supports the test of C programs
with the control-flow based criteria all-nodes and all-
edges, and with the Potential Uses criteria family,
which are data-flow based criteria [19]. JaBUTi sup-
ports all-nodes, all-edges, all-uses and all-potential
uses, for the test of Java programs [30] and derives the
required elements directly from the Java bytecode. The
coverage of each set x (individual) to be maximized is
given by:

Fitnessx =

nr. elements coveredx * 100

total number of required elements

• Execution time: the execution time of the test data set
x is given by the sum of the execution time of each test
data on x.

• Ability to reveal faults: to evaluate this ability for a
test data set x it was used mutation test and the essen-
tial operators [2] implemented by the tool Proteum [8].
If the test data is capable to kill the mutants generated
by a mutation operator, we consider that this data test is
capable to reveal the fault described by the correspond-
ing operator. The ability is given by the mutation score
of x provided by Proteum.

2.4 Evolution Process

The evolution process follows the steps, according to Al-
gorithm 1.

In the initial step, the test data are generated by using
the chosen representation, according to the language. The
individuals in the population are test data sets. The initial
population is randomly generated (Line 1.2). A loop starts
the evolution process (1.3). The fitness of each individual
is given by the tools, by evaluating each test data in the set
(1.8,1.10) After this, the dominated and non-dominated so-
lutions are identified (1.12) according to the Pareto domi-
nance criterion. Then, the criterion given by the multiple
objectives is applied (1.13) and the selected individuals are
used in other evolution, the evolution of the test data (1.14-
1.25).

In such process, the selection based on a roulette (1.16)
is used to select the test data in the individual that will suf-
fer the action of the genetic operators (mutation (1.19) and
crossover (1.20)). This means that the test data are also
evolved, and it is supposed that the individuals, the test data
sets will save the best test data trough the iterations. At the
end of an iteration, the test data are changed among individ-
uals by the relation operators (1.21), to maintain diversity.
This is related to the evolution of the test data sets.

Finally, the set of the best solutions are added to the new
population (1.27), and are returned as output by the algo-
rithm (1.28). The evolution continues until the stop crite-
rion is reached, that is, a number maximum of generations
(or the execution time determined by the tester) is reached.
After the loop, the individuals are analysed and the non-
dominated solutions are added to the set of non-dominated
solutions found during the role process.

input : code under test (cut, configuration file
output: a set of non-dominated solutions

nondominated[]← ∅;1.1

pop[]← generateRandomPop();1.2

while not numGenerations or maxExecutionTime1.3

do
for i← 0 to sizeof(pop[]), do1.4

ind← pop[i] ;1.5

for j ← 0 to ind.c(),do1.6

testData← ind.getTestData(j);1.7

evaluate(testData);1.8

end1.9

evaluate(ind);1.10

end1.11

nonDominated[]←1.12

selectNonDominated(pop);
indSel[]← multi-objectiveSelecion(pop);1.13

for i← 0 to indSel[], do1.14

ind← indSel[i];1.15

selData[]← rouletteSelecion(ind);1.16

for j ← 0 to sizeof(selData[]),do1.17

testData← selData[j];1.18

mutation(testData);1.19

crossover(testData, selData[j + 1]);1.20

selData[j]← testData;1.21

end1.22

ind← selData[];1.23

indSel[i]← ind;1.24

end1.25

relate(indSel);1.26

pop[]← indSel[];1.27

foreachsolution in nonDominated[]do1.28

print(solution);
end1.29

Algorithm 1 : Pseudocode of the Implemented Al-
gorithm

3 Evaluation Studies

The implemented approach was evaluated in three case
studies. They were chosen to make possible an evaluation in
both test contexts, including procedural and object-oriented

programs. Other points to be explored by the case stud-
ies were: the use of different test criteria (based on control
and data flow) and the combination of the three objectives
implemented by the framework to guide the test data gener-
ation.

The configuration was empirically adjusted. In each case
study, the algorithm was executed with variations in the
number of generations, number of individuals in the popu-
lation, number of test data, and etc. The rates related to the
genetic operators were fixed following suggestions found
in the literature [9], and after this, adjusted. They are: 0.8
for crossover rate; 0.2 for mutation; and 0.7 for the relation
operator. Chosen the configuration, the results obtained by
NSGA-II were compared to a random strategy (RS) by con-
figuring the number of generations equal to 1.

In both strategies, the algorithms were executed 10
times. After all the executions, to allow a visual com-
parison, a front was obtained composed only by the non-
dominated solutions, considering the solutions of all execu-
tions. In many cases, mainly considering RS, after this step
only one solution was obtained. This means that this solu-
tion dominates the solutions found in all executions. Next,
the solutions found and the configuration used for each case
study are presented.

3.1 Case Study 1

This study used two object-oriented programs and two
objectives: coverage of a structural criterion and execution
time. The programs are: Find.java and TriTyp.java1. As
mentioned in Section 3 the program TriTyp.Java determines
if three integer numbers form a triangle and in the affirma-
tive case returns the type of formed triangle. The other
program Find.Java searches for an entry in a vector. The
following criteria implemented by JaBUTi were used: all-
edgesei (AEi) and all-usesei(USi). The configuration used
is in Table 2. The solutions found for each program and
criterion are in Table 3.

Table 2. Configurations of Case Study 1

Program Criterion numGenerations numIndividuals numTestData
TriTyp AEi 100 100 50
TriTyp USi 100 100 50
Find AEi 50 50 50
Find USi 50 100 50

We can observe, as it was expected, that it is more diffi-
cult to satisfy the data-flow based criterion. For program
TriTyp and the criterion all-edges, NSGA-II presented 5
non-dominated solutions and RS one. The RS solution is
dominated by the NSGA solutions. The NSGA solutions

1Used in diverse works reported in the literature [4, 24]. Available on
http://www.infcr.uclm.es/www/mpolo/stvr/.

Table 3. Results of Case Study 1

Program Criterion NSGA-II RS
Cov. Exec.Time Cov. Exec.Time(ms)
(%) (ms) (%) (ms)
81 319 65 284
76 297

TriTyp AEi 74 281
72 278
52 344

USi 69 315 42 349
40 331

AEi 95 297 88 327
93 292

Find 88 303 86 247
USi 87 220 76 240

77 200

vary from 244 to 319ms and coverage of 52 to 81%. The
algorithm could select the most relevant points in the search
space. For the criterion US, NSGA-II presented only one
solution that also dominates both solutions found by RS.
Similar result was obtained to program Find. NSGA-II pre-
sented a greater number of solutions, which dominate the
solutions found by RS.

3.2 Case Study 2

In this study, two objectives were evaluated: the cover-
age of the data-flow based criterion all-potential-uses (PU)
(or the coverage of the criterion all-edges (AE)) imple-
mented by Poketool, and the ability of reveal faults, de-
scribed by the essential operators of Proteum. It was used
the program compress.c2. The program replaces characters
that appear more than three times in a string by a sequence
that indicates the number of repetitions, and returns a string
with a lower number of characters.

In the case, for both criteria all the parameters were set
with 50, except the number of individuals in the population
for criterion PU, which was set with 100. The obtained re-
sults are in Table 4.

Table 4. Results of Case Study 2

Program Criterion NSGA-II RS
Cov. Exec.Time Cov. Exec.Time
(%) (ms) (%) (ms)

compress AE 100 77 100 70
PU 83.33 77 83.33 70

We observe that both strategies reach the same coverage
for both structural criterion. The obtained value for the cov-
erage is optimal (or near to the optimal, since the criterion
PU requires around 10% of infeasible elements [29]). How-
ever, the test set generated by NSGA-II has greater ability
to reveal faults.

2Available on the book of Kernighan [17] and also used by otherau-
thors in the literature [29, 33].

3.3 Case Study 3

Again, with the program compress.c, three objectives
were investigated: the coverage of the criterion all-
potential-uses (PU), the ability to reveal faults described by
the essential operators, and execution time. The parameters
used are: number of generations and individuals equal to
100, and number of test data 10. The obtained results are in
Table 5.

Considering more than two objectives does not imply
lower efficiency. NSGA-II obtained solutions with the same
coverage reached with two objectives, and at the same time
to minimize the third objective, execution time. The same
does not happen with RS. The solutions obtained by NSGA
dominate the solution found by RS.

Table 5. Results of Case Study 3

NSGA-II RS
Cov. Fault Exec.Time Cov. Fault Exec.Time
(%) (%) (ms) (%) (%) (ms)

83.33 77 80 78.89 70 87
83.33 76 77
78.89 77 76

3.4 Analysis

By analysing the results of all case studies we can ob-
serve that the solutions found by NSGA-II dominate all the
solutions found by RS, independently of the test criterion
and objective being considered. The implemented algo-
rithm is capable to improve the quality of the data gener-
ated, and offer a set of good solutions to be used according
to the test goals.

To compare the strategies, the indicator Hypervol-
ume [36] was used. This indicator shows how the solutions
found by the algorithms are spread in the search space. The
values of Hypervolume were compared through the Mann-
Withney U-test [6]. It is a non-parametric test, used to check
the null hypothesis of two samples being similar. It was
adopted a significance level (p-value) of 0.05. The lower
the value the greater the difference between the algorithms.
All the obtained p-values are always< 0.05, indicating the
the NSGAII presents statistically better solutions.

With respect to the costs, given by the execution time.
The studies were done in a computer Intel(R) Xeon(R)- 7
GB, operational system Debian 5.0. We observe that greater
numbers of individuals and test data contribute to increase
costs of both strategies. It seems that the test criterion used
does not influence significantly on this cost. The mean time
for all executions of the programs is presented in Table 6.
We observe that the cost is almost three times greater. So
we suggest that the strategies can be used in a complemen-
tary way. NSGA-II can be used to improve the random

sets, mainly considering strength criteria, such as data flow
based.

Other observed point, to be investigated in future exper-
iments, is that the coverage of the criterion and ability to
reveal faults seems to be dependent. Improving coverage
implies to reveal more faults. Hence, a combination that
makes the use of a multi-objective approach more suitable
is that one that includes the execution time.

Table 6. Costs of the algorithms

Program Criterion Result
TriTyp 02:40:23 00:40:10
Find 01:22:38 00:19:23

compress 01:37:11 00:23:34
compress(3) 01:30:22 00:19:21

4 Related Work

The generation of test data sets using search based al-
gorithms has been largely explored in the literature [20].
The existing works differ on the technique used, such as
Genetic Algorithms, Genetic Programming, and etc. Other
difference is on the fitness evaluation. Most works are ori-
ented to the coverage of structural and fault-based crite-
ria in the context of procedural programs [10, 16, 21, 32].
In the context of object-oriented programs, few works are
found [25, 26, 27, 28, 31]. They also have the goal of satis-
fying structural criteria, mainly the all-edges criterion.

A problem is that most of these works are not integrated
with a test tool, and most algorithms implemented need the
code is available for the test. In addition to this, they formu-
late the test generation problem as related to a single objec-
tive, by using only a fitness function. As we mention before,
there are several factors that can be considered. This task is
in fact a multi-objective problem.

In the Software Engineering area, the use of multi-
objective optimization is an emergent research area [15]. It
has been explored to reduce project costs and to configure
software project times [1]; to select requirements for soft-
ware release [35], to software refactoring and design [3, 13].

In the test activity these algorithms were used for selec-
tion of test cases [34] and also to test data generation. Cao
et al. [5] present a method based on similarity of executed
paths to generate test data to cover a specific path. Ghiduk et
al. [12] introduce an algorithm to ensure coverage of a data-
flow based criterion and to reduce the number of generated
test data. With the same goal, the work [22] implements
multi-objective algorithms to maximize coverage of control
and data flow based criteria, and to minimize the number of
test data. A work that is very similar to ours is the work of
Harmam et al. [14]. In such work, the authors also used a

multi-objective Genetic Algorithm to maximize the cover-
age of branches and to reduce consumption of memory.

Our work, differently of the abovementioned ones, is
integrated with two test tools, which allows the use of a
multi-objective genetic algorithm in two contexts, procedu-
ral and object-oriented programs. The criteria implemented
in the context of object-oriented code derive their test re-
quirements from the Java bytecode. The representation used
for the individuals allows the test data generation even if the
source code is not available. This is very common in the
test of most components. In addition to this, the the multi-
objective approach considers other objectives and factors
that can influence the test data generation and are required
for the test data: execution time and kind of faults to be
revealed.

5 Conclusions

This work explored a multi-objective approach for test
data generation and described a framework that implements
the algorithm NSGA-II considering possible combinations
of three objectives: coverage of structural criteria, execution
time, and ability to reveal faults.

The framework implements two kind of representations
for the population and the NSGA-II algorithm. The first
representation allows the test of C programs and the inte-
gration with the tool Poketool that implements the criteria
based on control and data flow. The second representation
allows the test of object-oriented code and the integration
with the tool JaBUTi, which implements control and data
flow based criteria that derive their test requirements di-
rectly from the Java bytecode. The framework allows the
test data generation even if the source code is not available.

The use of the implemented algorithm in both contexts
was evaluated in three case studies and compared with a
random strategy. The results show that the multi-objective
algorithm get better solutions and improvements for all the
objectives, and a large variety of solutions to be chosen ac-
cording to the testing purposes. The solutions found by the
random strategy are always dominated by the NSAGA-II.
In spite of more expensive, the use of the framework con-
tributes to reduce the tester’s effort. It is justified if there
are different characteristics desired for the test data to be
generate, and that they are in conflict.

Other research studies include the implementation and
evaluation of other objectives in the framework, as well as,
other meta-heuristic algorithms. These improvements will
allow the conduction of new evaluation experiments. A pos-
sible context to be explored is the integration of the frame-
work with the JaBUTi/AJ [18], to permit the test data gen-
eration for aspect-oriented programs.

References

[1] E. Alba and F. Chicano. Software project management with
GAs. Information Sciences, 177(11):2380–2401, June 2007.

[2] E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi.
Toward the determination of sufficient mutant operators for
C. Software Testing, Verification Reliability, 11(2):113–136,
2001.

[3] M. Bowman, L. C.Briand, and Y. Labiche. Multi-objective
genetic algorithm to support class responsibility assign-
ment. InIEEE International Conference on Software Main-
tenance, pages 124–133, October 2007.

[4] L. C. Briand, Y. Labiche, and Z. Bawar. Using ma-
chine learning to refine black-box test specifications and test
suites. InThe Eighth International Conference on Quality
Software, pages 135–144, 2008.

[5] Y. Cao, C. Hu, and L. Li. Search-based multi-paths test data
generation for structure-oriented testing. InACM/SIGEVO
Summit on Genetic and Evolutionary Computation, pages
25–32, 2009.

[6] W. J. Conover. On methods of handling ties in the wilcoxon
signed-rank test.Journal of the American Statistical Associ-
ation, pages 985–988, December 1973.

[7] K. Deb and N. Srinivas. Multiobjective optimization us-
ing nondominated sorting in genetic algorithms. InIEEE
Transactions on Evolutionary Computation, pages 221–248,
1994.

[8] M. E. Delamaro and J. C. Maldonado. Proteum - a tool for
the assesment of test adequacy for C programs.In Con-
ference on Performability in Computing Systems (PCS 96),
pages 79–95, July 1996.

[9] J. D. Farmer, N. Packard, and A. Perelson.Introduction to
genetic algorithms. MIT press, 1 edition, 1997.

[10] L. P. Ferreira and S. R. Vergilio. TDSGen: An environ-
ment based on hybrid genetic algorithms for generation of
test data. InSoftware Engineering and Knowledge Engi-
neering, pages 312–317, 2005.

[11] P. G. Frankl and E. J. Weyuker. An applicable family of data
flow testing criteria.IEEE Transactions Software Engineer-
ing, 14(10):1483–1498, 1988.

[12] A. S. Ghiduk, M. J. Harrold, and M. R. Girgis. Using genetic
algorithms to aid test-data generation for data-flow cover-
age. InProceedings of the 14th Asia-Pacific Software Engi-
neering Conference (APSEC ’07), pages 41–48, December
2007.

[13] L. Grunske. Identifying "good" architectural design alter-
natives with multi-objective optimization strategies. InPro-
ceedings of the 28th International Conference on Software
Engineering, pages 849–852, May 2006.

[14] M. Harman, K. Lakhotia, and P. McMinn. A multi-objective
approach to search-based test data generation. InGenetic
and Evolutionary Computation Conference, 2007.

[15] M. Harman, S. A. Mansouri, and Y. Zhang. Search based
software engineering: A comprehensive analysis and review
of trends techniques and applications. Technical Report TR-
09-03, Department of Computer Science, King’s College
London, April 2009.

[16] B. F. Jones, H. H. Sthamer, and D. E. Eyres. Automatic
structural testing using genetic algorithms.Software Engi-
neering Journal, pages 299–306, 1996.

[17] B. W. Kernighan.The C Programming Language. Prentice-
Hall, Englewood Cliffs New Jersey, 1978.

[18] O. Lemos, A. Vincenzi, J. Maldonado, and P. Masiero.
Control and data flow structural testing criteria for aspect-
oriented programs. Journal of System and Software,
80(6):862–882, 2007.

[19] J. C. Maldonado, M. L. Chaim, and M. Jino. Briding the
gap in the presence of infeasible paths: Potential uses test-
ing criteria. InXII International Conference of the Chilean
Science Computer Society, pages 323–340, October 1992.

[20] P. McMinn. Search-based software test data generation:
A survey. Software Testing, Verification and Reliability,
2(14):105–156, 2004.

[21] C. C. Michael, G. McGraw, and M. A. Schatz. Generating
software test data by evolution.IEEE Transactions on Soft-
ware Engineering, 27(12):1085–1110, December 2001.

[22] N. Oster and F. Saglietti. Automatic test data generation by
multi-objective optimisation. InSAFECOMP, pages 426–
438, 2006.

[23] V. Pareto, editor.Manuel D”Economie Politique. Ams Pr,
1927.

[24] M. Polo, M. Piattini, and I. García-Rodríguez. Decreasing
the cost of mutation testing with second-order mutants.Soft-
ware Testing Verification Reliability, 19(2):111–131, 2009.

[25] J. C. B. Ribeiro. Search-based test case generation for
object-oriented Java software using strongly-typed genetic
programming. InGenetic and Evolutionary Computation
Conference, 2008.

[26] R. Sagarna, A. Arcuri, and X. Yao. Estimation of distri-
bution algorithms for testing object oriented software. In
Proceedings of the IEEE Congress on Evolutionary Compu-
tation (CEC ’07), pages 438–444, September 2007.

[27] A. Seesing and H.-G. Gross. A genetic programming ap-
proach to automated test generation for object-oriented soft-
ware.International Transactions on System Science and Ap-
plications, 1(2):127–134, October 2006.

[28] P. Tonella. Evolutionary testing of classes. InACM SIG-
SOFT International Symposium on Software Testing and
Analysis, pages 119–128, 2004.

[29] S. R. Vergilio and M. J. J. C. Maldonado. Infeasible paths in
the context of data flow based testing.Journal of the Brazil-
ian Computer Society, 12(1), 2006.

[30] A. M. R. Vincenzi, M. E. Delamaro, J. C. Maldonado, and
W. E. Wong. Establishing structural testing criteria for Java
bytecode.Software: Practice and Experience, 36(14):1513–
1541, 2006.

[31] S. Wappler and F. Lammermann. Using evolutionary al-
gorithms for the unit testing of object-oriented software.
In GECCO ’05: Proceedings of the 2005 conference on
Genetic and evolutionary computation, pages 1053–1060,
2005.

[32] J. Wegener, A. Baresel, and H. Sthamer. Using evolutionary
testing to improve efficiency and quality in software testing.
research and technology. In2nd Asia-Pacific Conference on
Software Testing Analysis and Review (AsiaSTAR, 2002.

[33] E. J. Weyuker. More experience with data flow testing.
IEEE Transactions on Software Engineering, 19(9):912–
919, 1993.

[34] S. Yoo and M. Harman. Pareto efficient multi-objective
test case selection. InInternational Symposium on Software
Testing and Analysis, 2007.

[35] Y. Zhang, M. Harman, and S. A. Mansouri. The multi-
objective next release problem. InGECCO ’07: Proceed-
ings of the 9th annual conference on Genetic and evolution-
ary computation, pages 1129–1137, 2007.

[36] E. Zitzler, D. Brockhoff, and L. Thiele. The hypervolume
indicator revisited: On the design of pareto-compliant in-
dicators via weighted integration. InConference on Evo-
lutionary Multi-Criterion Optimization (EMO 2007), pages
862–876, 2006.

