
How (Not) to Find Bugs: The Interplay Between
Merge Conflicts, Co-Changes, and Bugs

Luı́s Amaral∗, Marcos C. Oliveira†, Welder Luz∗, José Fortes∗,
Rodrigo Bonifácio∗, Daniel Alencar‡, Eduardo Monteiro∗, Gustavo Pinto§, and David Lo¶

∗University of Brası́lia. Brası́lia, Brazil
†Brazilian Ministry of Economy. Brası́lia, Brazil
‡University of Otago. Dunedin, New Zealand
§Federal University of Pará. Belém, Brazil

¶Singapore Management University. Singapore

Abstract—Context: In a seminal work, Ball et al. [1] investigate
if the information available in version control systems could be
used to predict defect density, arguing that practitioners and
researchers could better understand errors “if [our] version con-
trol system could talk”. In the meanwhile, several research works
have reported that conflict merge resolution is a time consuming
and error-prone task, while other contributions diverge about the
correlation between co-change dependencies and defect density.
Problem: The correlation between conflicting merge scenarios
and bugs has not been addressed before, whilst the correlation
between co-change dependencies and bug density has been only
investigated using a small number of case studies—which can
compromise the generalization of the results. Goal: To address
this gap in the literature, this paper presents the results of a
comprehensive study whose goal is to understand whether or not
(a) conflicting merge scenarios and (b) co-change dependencies
are good predictors for bug density. Method: We first build a
curated dataset comprising the source code history of 29 popular
Java Apache projects and leverage the SZZ algorithm to collect
the sets of bug-fixing and bug-introducing commits. We then
combine the SZZ results with the set of past conflicting merge
scenarios and co-change dependencies of the projects. Finally,
we use exploratory data analysis and machine learning models
to understand the strength of the correlation between conflict res-
olution and co-change dependencies with defect density. Findings:
(a) conflicting merge scenarios are not more prone to introduce
bugs than regular commits, (b) there is a negligible to a small
correlation between co-change dependencies and defect density—
contradicting previous studies in the literature.

Index Terms—software defects, software integration, merge
conflicts, co-change dependencies

I. INTRODUCTION

Software teams spend a significant amount of time trying
to locate defects and fixing bugs [2]. Actually, fixing a
bug involves isolating the part of the code that causes an
unexpected behavior of the program and changing it to correct
the error [3, 4]. This is a challenging task, and developers
often spend more time fixing bugs and making the code more
maintainable than developing new features [5, 6, 7].

To mitigate the time spent fixing bugs, it is crucial to better
understand the development practices and the properties of
the systems that are more likely to introduce bugs. Exist-
ing research works have investigated the correlation between
structural properties of the systems (such as object-oriented
metrics) and defect density [8, 9, 10]. Researchers have also

investigated whether the complexity of code changes could
be used to estimate the incidence of bugs in software as-
sets [11, 12]; while others have leveraged information available
in version control systems (VCSs) either to (a) characterize the
properties of changes that may introduce bugs [13] or to (b)
investigate if co-change metrics are good predictors for defect
density [1, 14, 15, 16].

Although some studies investigated the characteristics of
bug-introducing changes (e.g., [13, 17]), there are many other
categories of these changes that have not been explored before.
Exploring specific categories of bug-introducing changes is
essential to aid developers in avoiding them. In our paper,
we investigate two potential categories of bug-introducing
changes: merge conflict resolution and co-changes dependen-
cies. To the best of our knowledge, we are the first to address
the relationship between merge conflicts and bug-introducing
changes. Furthermore, while previous research works have
explored the relation between co-change dependencies metrics
and defect density, the conclusions have been drawn from a
small number of samples and are inconclusive—some works
claim that co-change dependencies might be used to predict
defects [14], while others claim the contrary [1]. The lack of a
general understanding of these two aspects brings the general
research questions we address in this paper:

RQ1 To what extent conflicting merge scenarios induce bugs?
Answering this research question is important because it
could reveal the impact of merging operations on the cor-
rectness of the systems—particularly because previous
research works suggest that resolving merge conflicts is
a complicated and error-prone task [18, 19, 20].

RQ2 To what extent co-change dependencies metrics correlate
to defect density? Answering this research question is
important because it could reveal a negative side of a
system decomposition that leads to co-change depen-
dencies, either confirming or refuting results of previous
studies [14, 21, 22].

To achieve our goal, we first mine the source code history of
a curated dataset comprising 29 popular Java Apache projects
hosted on GitHub. We then leverage the SZZ algorithm to
identify the bug-fixing changes (BFCs) and bug-introducing



changes (BICs). We relate the outcomes of the SZZ algorithm
with the information about conflicting merge scenarios and
co-change dependencies. Finally, we use statistical methods
to answer the research questions.

Our study brings several findings, for instance: we evidence
that commits that solve conflicting merge scenarios are not
more likely to introduce bugs than regular commits. Apart
from that, resolving 9.43% of the conflicting merge scenarios
lead to bug-introducing changes, which represents 0.5% of all
BICs. Curiously, our results also suggest that the continuous
integration of code does not necessarily reduce the amount
of bugs caused by conflict resolution. Finally, contrasting to
previous research [14], we did not find evidence that co-change
dependency metrics are good predictors for defect density.

II. RELATED WORK

In this paper, we leverage the SZZ algorithm to investigate
to what extent (a) conflicting merge scenarios introduce bugs
and (b) co-change dependency metrics relate to defect density.
Because our work investigates whether merge conflicts and
co-changes relate to bugs, we surveyed the related research
regarding merge conflicts and co-changes.

A. Research on Merge and Conflict Resolution

Recent workflows for collaborative development support the
use of different branches to implement each feature or bug fix,
for instance. The contributions from different branches must be
integrated at some point, through operations such as merge or
rebase—both available in popular distributed version control
systems (VCSs), such as Git and Mercurial. Nonetheless,
existing research works report that solving conflicting merge
scenarios are both tedious and error prone [18, 19, 20]. To
mitigate this problem, researchers have proposed techniques
to predict, prevent, and help developers during activities of
conflict resolution.

Regarding conflict prevention and resolution, Guimarães
and Silva [23] introduce the idea of continuous merge inside
the IDE. The goal is to continuously merge uncommitted and
committed changes in order to avoid conflicts—using a fine-
grained solution. Previously, awareness tools have also been
designed to deal with merge conflicts [24, 25] at a coarser
grained level file (e.g., file). More recently, Apel et al. [26]
propose an approach for structured merging, trying to find a
balance between precision and performance. The rationale for
their approach is that unstructured merge scenarios (using a
line-based strategy, for instance) have great performance but
poor precision. Similarly, other research contributions aim to
improve the precision of merge tools [27, 28, 29] to reduce
the number of conflicts.

Regarding predictive models for integration conflicts,
Leßenich et al. [30] explore whether or not a set of merge
scenario features (obtained from a survey with practitioners)
could be used to estimate the size of merge conflicts. That
is, the goal is to verify if merge conflict prediction based on
those features could help developers during the activity of code
integration. As a result of the empirical analysis, the authors

report that none of the features are good predictors concerning
conflict size (e.g., number of files in conflict, lines of code
in conflict, and so on). Despite this overall negative result,
their study formed a solid basis for replication and follow-up
studies such on conflict-avoidance strategies (e.g., speculative
merging).

Following a similar approach, Owhadi-Kareshk et al. [31]
built some classifiers to decrease the cost of speculative merg-
ing running in background, by avoiding to perform speculative
merging [23, 32, 33] in the safe scenarios. Proactive conflict
detection is based on speculative merging, which retrieves all
available branches and merges them in background. While it
is cheap to perform a single textual merge operation, the cost
can increase exponentially according to the number of active
branches. Differently from the work by Leßenich et al. [30],
Owhadi-Kareshk et al. [31] argue that a lack of correlation
does not necessarily mean that it is not possible to classify
safe versus conflicting merge scenarios. Their results confirm
the lack of a significant correlation between the character-
istics of a merging scenario and the number of conflicts.
Nonetheless, their prediction results show that their classifiers
did not perform poorly. The results are useful to check safe
merge scenarios and reduce the costs of proactive speculative
merging, reducing the computational costs.

Accioly et al. [34] also analyzed the prediction power of
two features for early conflict detection—editions to the same
method (EditSameMC) and editions to directly dependent
methods (EditDepMC). As a result of the conflict awareness
tool, considering EditSameMC and EditDepMC, the precision
indicates that the tool triggered the alarm 57.99% of the
merge scenarios. Moreover, the recall indicates they have
captured 82.67% of the merge scenarios with conflicts (merge,
build, or test) when considering both predictors. Furthermore,
when analyzing the predictors individually, EditSameMC has
a precision of 56.71% and EditDepMC, only 8.85%, and
recall of 80.85% and 13.15% respectively. As a conclusion,
their study is useful to guide conflict awareness strategies and
provide a better notion of the real frequency of merge conflicts.

Ahmed et al. [35] investigated strength of the correlation
between entities that contain code smells, the code smells
they contain, and the merge conflicts surrounded by smelly
entities. The goal is to obtain metrics about code changes
and conflicts. First, they divided conflicting merge scenarios
into two categories—semantic conflicts (requires to understand
the logic of the program to resolve, such as variable name
changed), and non-semantic (more natural and less risky to
resolve, such as comments and white space). As a result, the
authors report that, on average, elements involved in merge
conflicts present three times more code smells than elements
not involved in merge conflicts. Since code smells are more
expected to be related to bugs in the future [36], they conclude
that entities involving code smells and merge conflicts are
more likely to be buggy, and practitioners should pay more
attention to code smells to reduce the number of merge
conflicts.



B. Research on Co-change Dependencies

Ball et al. [1] present one of the first research works that
explore the use of co-change dependencies (a.k.a, change
coupling or logic coupling) to analyze the structure of systems.
In fact, the research on co-change dependencies have focused
on getting new insights about the structure of systems [16,
37, 38, 39] and finding opportunities to rethink architectural
decisions [40, 41]. For instance, Beyer and Noack [37] use
information from version control systems to build a graph
from assets that frequently change together. The goal is to
find clusters in this graph that correspond to subsystem can-
didates. Other research works focus on the interplay between
structural dependencies and co-change dependencies [16, 39],
highlighting that there is no linear correlation between these
types of dependencies—classes that are statically dependent
do not necessarily change together. Other research works find
opportunities to change the decomposition of the systems
using co-change dependencies [40, 41].

Besides reasoning about the structure of the systems, other
research works investigate the relationship between co-change
dependencies and defect density. However, we could not find
a consensus about this topic. Some findings reported in the
literature [21, 42] claim that there is no correlation between
highly co-change coupled assets (such as files or classes) and
the bug incidence in these assets (i.e., frequency that these
assets change due to bug fixes). For instance, Knab et al.
[21] use decision trees to find rules that can be used to
predict defect density. Using data extracted from the Mozilla
Web Browser source code history, the authors conclude that
“change couplings are of little value for the prediction of defect
density” [21].

Contrasting, other research works [14, 43, 22] suggest that
there is a correlation between co-change dependency metrics
(such as the number of co-dependent classes of a given class)
and bug density. For instance, D’Ambros et al. [14] present the
results of an empirical study using three open source systems
(ArgoUML, JDT Core, and Mylyn). The authors investigate
the correlation between five change coupling metrics and the
number of bugs of the components (Java classes)—reporting
a moderate to a high correlation between change coupling
metrics and defects. Other research works explored the same
question, though using a small number of systems [22, 43],
and concluded that co-change dependencies could be used to
predict defect density.

Our second research question also investigates whether or
not co-change dependency metrics correlate to defect density.
Nonetheless, differently from previous studies [14, 43, 22] that
draw conclusions from one or two systems, here we consider
a curated dataset with the source code history from a set of
29 Apache open source systems, increasing the generalization
of the results.

C. The SZZ algorithm and its limitations

The SZZ algorithm was introduced by Śliwerski et al.
[13], to identify the potential changesets (commits) responsible
for introducing defects. It is a well-known algorithm, being

widely used in the Just-in-Time Defect Prediction research
agenda to label historical-changes as bug-introducing or clean.
Rodrı́guez-Pérez et al. [44] present the results of a literature
review, assessing 187 papers that made use of the SZZ
algorithm to evaluate the reproducibility and credibility of
these publications in Empirical Software Engineering.

Several limitations of the SZZ algorithm have been reported,
including technical (e.g., mislabeled changes) and method-
ological ones (e.g., difficulty to reproduce the studies). For
instance, the first SZZ [13] variant has several problems. In
particular, it considers cosmetic changes (as indentation, blank
lines, and comments) as possible bug-introducing commits.
Nonetheless, cosmetic changes do not modify the software
behavior.

To deal with the technical limitations of the original SZZ
design, researchers developed new variants of the SZZ algo-
rithm [17, 45, 46], in order to reduce noise. When considering
the first phase of the algorithm (finding bug-fixing commits),
the limitation relies on how bug reports are linked to commits,
i.e., if the bug fix is not identified, the bug commit cannot be
determined, causing a false negative. False-positive happens
when a bug report does not describe a real bug, but a fixing
commit is linked to it. As reported by early studies 33.8%
[47] to 40% [48] of the bugs in issue tracking system are
miss-classified.

The second part of the algorithm, which is concerned with
identifying the bug-introducing commits, can also produce
false positives and negatives. Addressing these limitations
requires a manual and tedious validation process [44], and
da Costa et al. [17] proposed a framework to evaluate and
compare different implementations of SZZ.

Neto et al. [46] showed that discarding cosmetic changes
and refactoring contributions improve the precision of the
second phase of the original SZZ, from 37% using their
RA-SZZ implementation to 97% using the RA-SZZ∗ variant.
Moreover, RA-SZZ∗ outperforms another recent SZZ imple-
mentation (MA-SZZ [17]). After experimenting with other
implementations, and reading these results in the literature,
we decided to use RA-SZZ∗ in our research.

Although the SZZ algorithm has been used to relate work
practices and bug introducing change, we are the first to
investigate this aspect considering conflict merge resolution.

III. STUDY SETTINGS

In this section, we present the settings of our study, whose
main goal is to investigate whether syntactic merge conflicts
and commits that lead to co-change dependencies relate to
bugs. As such, we answer the research questions we introduce
in Section I.

A. Project Selection

Our procedures for project selection consider the existence
of tools for mining bug introducing commits and tools that we
could use to reproduce merge scenarios, identify non-cosmetic
changes (e.g., changes that go beyond adding a comment of
a piece of code), and compute co-change dependencies. To



mine bug-introducing commits, we leverage in our research
the RA-SZZ∗ [46] tool—a refactoring aware implementation
of the SZZ algorithm. RA-SZZ∗ collects project information
from a git source code repository and from a JIRA database
with the project issues. RA-SZZ∗ then populates a relational
database with all necessary information to find bug-fixing
commits, and link bug-fixing commits to bug-introducing com-
mits, taking into account refactoring and cosmetic changes.
The decision of using RA-SZZ∗ led us to consider the
Apache community as an initial project population, since a
set of Apache projects use JIRA as an issue management
system, and developers of Apache projects often link code
contributions to the JIRA issues—a requirement for improving
the performance of RA-SZZ∗. By mining from Apache we
are controlling for the quality of our dataset as we are much
less likely to perform our study on unrepresentative projects.

We then focused on Apache Java projects, due to the avail-
ability of tools to compute structured merge conflicts [49, 26]
and co-change dependencies [41]. Besides this, we found
some datasets about syntactic merge conflicts in Java projects,
which we could use to validate some of our procedures and
scripts we use to mine the change history of the projects.
Furthermore, following existing recommendations for mining
GITHUB repositories [50], we include the number of stars as
a measurement of popularity. As a result, we selected Apache
Java projects hosted on GITHUB having more than 200 stars.
Applying this filter on the APACHE GITHUB organization
revealed 101 repositories, which we considered as our initial
dataset. This initial dataset includes projects with different
characteristics, from medium size libraries and web frame-
works (e.g., Struts and Wicket) to full-fledged textual search
engines and database systems (e.g., Lucene and Cassandra).

B. Finding Bug-introducing commits

We mined software repositories to detect bug-introducing
commits (BICs) from the source code history of the selected
projects. To this end, we leveraged the RA-SZZ∗ [46] tool to
identify BICs. Several reasons support our choice of using
RA-SZZ∗. First, RA-SZZ∗ removes both refactoring and
cosmetic changes from bug-introducing candidates, reducing
the number of false positives. Second, previous results in the
literature show that RA-SZZ∗ outperforms other implementa-
tions [17, 46].

In this section, we use the Apache Nifi project as a running
example to describe our methodology. Apache Nifi is hosted
on GITHUB and uses JIRA as the issue tracking system (as
all instances of our initial project population). We follow the
steps below to mine the bug introducing commits:

(S1) Fetch bug issues: The first step is to collect bug issues
from JIRA, using its REST API, and filtering the issues
using the issue type = bug, the status = (resolved or
closed), and the resolution = fixed. As an output, we
collected 1988 issues from Apache Nifi.

(S2) Clone the project: The second step is to clone the
project repository locally to get its source-code history.

(S3) Find Bug Fixes: The third step is to use the resulting
files from previous steps to link bug-fixing commits
(BFCs) to issues. In this case, it is necessary to specify
how a bug fix should mention the issue in a commit
message, and then RA-SZZ∗ finds some patterns to
decide whether or not a commit is a bug-fix. As a result,
we obtain a file containing all BFCs necessary as input
to the second phase of the SZZ algorithm (that finds the
bug-introducing commits). For the running example, we
found 1847 bug-fixing commits, mapping 92% of the
issues from JIRA to BFCs on git-log.

(S4) Find Bug Introducing Commits: Finally, after comput-
ing the bug-fixing commits, we run the second phase of
RA-SZZ∗ to identify the commits responsible for intro-
ducing bugs. In the case of Apache Nifi, we obtained
2406 pairs of bug-fixing commits and their respective
bug-introducing commits. Notice that a bug-introducing
commit might be responsible for inducing more than one
issue, and one bug-fixing commit might have more than
one BIC.

In summary, considering our running example, SZZ iden-
tified 2406 pairs of BFC × BIC—having 1025 unique BFCs
and 920 unique BICs. We created additional scripts to replicate
the pilot study, through running RA-SZZ∗ for the remaining
100 project repositories. After assessing the results in these
repositories, we filter out several outlier projects from our
analysis, as we discuss in Section IV-A.

C. Identifying and Re-playing Merge Scenarios

To answer RQ1, we identify all merge scenarios (conflicting
and non-conflicting ones) of a project. Using the git log
capabilities, we collected information about the commits that
correspond to merge scenarios, including information about
the commit hash of two parents of a merging scenario (left
and right). We also collect additional information regarding:
(a) if the merge scenario leads to conflict, (b) the time span
between the commit date of the left/right shared ancestor
and the commit date of the merge, and (c) the number of
contributors in the left and right development branches. It
is necessary to replay every merge scenarios to collect all
this information because git does not keep a record of past
merge conflicts. We use these merge attributes to investigate
the performance of models to predict when a conflicting merge
scenario is more likely to introduce a bug.

Our procedure to answer RQ1 consists of first collecting all
hash commits that correspond to conflicting merge scenarios
(creating a dataset with all conflicting merge scenarios from
the projects in our projects’ population). Based on the outputs
of RA-SZZ∗, we create a second dataset with all bug intro-
ducing commits. After that, we merge these two datasets and
use exploratory data-analysis [51] to estimate the frequency in
which conflicting merge scenarios introduce bugs.

We further explore RQ1 by building and comparing the per-
formance of three machine learning algorithms to predict the
likelihood with which a conflicting merge scenario introduces
a bug. The sequence of steps necessary to collect information



about merge conflicts is as follows. It is important to note that
all steps have been performed using variations of the git
log, git reset, and git merge commands.
(S1) Get all Commits: In the first step we collect the hash

information, the date, and the author’s name of all
commits. This information is relevant while performing
the exploratory data analysis.

(S2) Get the Merge Commits: In the second step, we collect
the hash of all merge commits and their respective
parents’ hashes, including the left parent hash (left hash)
and right parent hash (right hash). We represent these
commits with the labels LP and RP in Figure 1.

(S3) Find the Base Commit: After finding the hash of the
parents’ commits (LP and RP), we are able to find the
common ancestor (the CA commit in Figure 1). In this
research we only considered 3-way merge scenarios.

(S4) Re-play Merge Commits: In this step we verify if there
were files in conflict in a merge scenario; if so, we also
collect more detailed information, by hard resetting git
to the base common ancestor (CA) and then merging that
base with the parent right (RP), and finally merging the
results with the parent left (LP).

(S5) Record the outcome: Finally, when a conflict occurs,
we collect and treat the outcome of Step 4 to collect
several features from a merge scenarios (e.g., number of
modified files, number of lines added, number of lines
removed, number of files in conflict, and number of con-
tributors), which we use to build prediction models. We
decided only to use features that could be collected using
git commands, similarly to previous studies [30, 31].

CA LP

RP

MC

common 
ancestor

right branch

left branch merge 
commit

Fig. 1. Components of a merge scenario

We recreated 363 merges scenarios for the Apache Nifi
project using the above procedures, from which 30 of them
led to conflicts (8.26%). By merging both datasets, we found
that SZZ blamed seven conflict merge scenarios (that is, they
are potential bug-introducing commits).

D. Computing Co-change Dependencies

To answer our second research question, we first have to
compute the co-change dependencies of the systems. A co-
change dependency arises when two source-code entities, such
as classes, interfaces, methods, or fields, frequently change to-
gether. We compute co-change dependencies using the source
code history of the systems. Popular VCSs such as git and
Subversion maintain the evolution of source-code artifacts

(typically files), and the history of changes can be described
as a sequence of commits H = (c1, c2, . . . , cn), where each
commit contains a subset of artifacts in the form ci ⊆ A. From
this sequence of commits, we can build a (di)graph whose
vertexes correspond to the source code entities of a system
and whose edges correspond to the co-change dependencies.
Although it is possible to compute co-change dependencies for
finer-grained entities [41], in this study we focus on coarse-
grained entities (i.e., the vertexes of our graph correspond to
Java classes).

We then use two metrics to determine if two entities ea and
eb change frequently together: support count and confidence.
The first counts the number of commits in which both ea and
eb appear together; while the second corresponds to the ratio
of the support count between ea and eb and the number of
commits containing ea. Note that, while the support count is
commutative, i.e., the support count between ea and eb is the
same of the support count between eb and ea, the confidence
is not, i.e., the confidence between ea and eb might differ
from the confidence between eb and ea. We consider that ea
and eb change frequently together if their support count and
confidence are above the threshold for support count Smin and
confidence Cmin at least in one direction. Several studies on
co-change dependencies use the values Smin = 2 and 0.4 ≤
Cmin ≤ 0.5 (e.g., [40, 38]).

We also compute two additional metrics [14] from the co-
change dependencies: Number of Coupled Classes (NOCC)
and Sum of Class Coupling (SOCC). The first computes the
number of classes n-coupled with a given class—where n
specifies a dependency threshold corresponding to the min-
imum number of changes between two components. The sec-
ond is the sum of the shared transactions (commits) between a
given class c and all the classes n-coupled with c. Accordingly,
SOCC considers the strength of the coupling between the two
components. Finally, we use statistical methods (hypothesis
testing and regression analysis) to estimate the strength of the
relationship between these metrics and metrics that estimate
how a given component is prone to bugs.

IV. RESULTS

In this section we present the results of our empirical study.
We first report the outcomes of an exploratory data analysis,
and then we answer our research questions using statistical
methods (either hypothesis testing or regressions models).

A. Data Description

We conduct an exploratory data analysis to get a general
understanding about the frequency of merge scenarios and
conflicting merge scenarios, as well as to refine and build
curated datasets we use to answer our research questions.
To curate our dataset, we removed projects that neither have
merge scenarios nor conflicting merge scenarios. Interesting,
in nine projects, we did not find any merge commit (e.g.,
COMMONS-IO). Although we do not investigate this issue in
details, we conjecture that some projects employ alternative
procedures to integrate software changes (e.g., rebase).



Furthermore, we eliminated projects that do not have at least
26 (first quartile) merge scenarios and filtered out projects
in which it was not possible to collect at least 200 (first
quartile) closed bug-issues, to guarantee that we would have
linked a representative number of issues to bug-introducing
commits. Finally, we classified the merge scenarios either
as extra, extra large merge scenarios (XXL) or non-extra,
extra large merge scenarios (non-XXL). To this end, we
roughly estimate the complexity of a merge scenario (Cm)
as the geometric mean between the number of changed
files from its parents (left and right). In our dataset, XXL
scenarios are those scenarios with Cm > 15.780 (third
quartile). Having this separation is important because we
found many merge scenarios changing a huge number of
files. For instance, the merge scenario with commit ID
3b21d1db4109939450dc400faebe568222ab4758
from NETBEANS changed more than 70,000 files.
Nonetheless, it is important to note that even the non-XXL
group contains merge scenarios involving more than 34 files
on the average, with contributions made by more than four
authors (also on average). Table I summarizes some features
of the non-XXL merge scenarios.

TABLE I
SUMMARY OF THE CHARACTERISTICS OF OUR DATASET WITH NON-XXL

MERGE SCENARIOS

Statistic Mean St. Dev. Min Max

Number of files changed 34.68 316.61 0 25,142
Number of contributors 4.45 5.527 2 175
Number of commits 14.52 50.368 2 2497

Altogether, our curated dataset, which is the intersection
of the outcomes generated by our three procedures (see
Sections III-B, III-C, and III-D), contains information about
21,189 merge scenarios of 29 Java Apache projects, from
which we collected 29,245 bug-introducing commits. The
average number of issues and bug-fixing commits per project
is 2445 and 1911, respectively. For instance, we have mined
15,465 closed bug issues and linked 14,333 bug-fixing com-
mits in APACHE AMBARI; while we got only 158 bug-fixing
commits for 203 closed bug issues collected from JIRA
in APACHE FINERACT. Figure 2 shows a histogram that
considers the rate of bug-fixing commits over the number
of issues per project. Overall, the first phase of RA-SZZ∗

linked 78.16% of the issues to bug-fixing commits. In seven
projects, RA-SZZ∗ linked more 90% of the issues to BFCs
(e.g., ZEPPELIN and LUCENE-SORL). Nonetheless, in the
APACHE CORDOVA-ANDROID project, RA-SZZ∗ linked only
508 bug-fixing commits to a total of 4709 issues (which
represents 10.79%). This situation occurs because APACHE
CORDOVA-ANDROID is a submodule of APACHE CORDOVA,
which shares the same JIRA repository with other modules.
Nonetheless, in our analysis we only considered APACHE
CORDOVA-ANDROID.

The outcomes of the second phase of RA-SZZ∗ revealed

Proportion of Issues linked to Bug−fixing commits (%)

N
um

be
r 

of
 P

ro
je

ct
s

20 40 60 80 100

0

2

4

6

8

Fig. 2. Proportion of bug issues linked to bug-fixing commits over the projects

59,910 pairs of BFC-BIC over the projects, comprising a
set of 22,532 bug-fixing and 29,245 bug-introducing distinct
commits. It is important to remember that a bug-introducing
commit might introduce bugs in more than one place, and
a bug-fixing commit might fix bugs introduced by multiple
BICs. For instance, APACHE CAMEL is the project with
more BICs—RA-SZZ∗ blamed 3336 commits for 2204 BFCs.
By comparing with its first phase, where RA-SZZ∗ linked
3354 bug-fixing commits for APACHE CAMEL, it means that
SZZ could not find BICs for 1150 BFCs. Considering the
NETBEANS project, SZZ revealed 66 BICs for 145 bug-fixing
commits while 128 BICs were responsible for introducing
errors in 123 BFCs on project APACHE PARQUET-MR. Overall,
according to the RA-SZZ∗ outcomes, 51% of BFCs fixed
errors caused by bug-introducing commits, with a rate higher
than 70% on FINERACT and CXF. The lowest rate value
happened in APACHE HIVE, in which RA-SZZ∗ linked only
667 BFCs to bug-introducing commits (9.88% of the total
number of BFCs). We found 1590 conflicting merge scenarios
(7.5% of the total number of merge scenarios). Considering
the merge scenarios, APACHE AVRO has 47 (the lowest) and
BEAM has 7365 (the highest). Finally, APACHE JAMES has
only one conflicting merge scenario, while STORM presents
239 conflicting merge scenarios. More than 40% of the merge
scenarios of HIVE led to a conflict. Considering the rate of
conflicted merge scenarios over the number of merges, Figure
3 shows that, in most of the projects (86.2%), conflicts occur
in less than 20% of merge scenarios.

B. To what extent conflicting merge scenarios induce bugs?

From the conflicting merge scenarios (1590 observations),
RA-SZZ∗ blamed 150 commits (9.43%) as bug-introducing
which introduced bugs in 21 projects. Apache Lucene is the
project with the highest number of bug-introducing commits
linked to conflicting merge scenarios (30), followed by Apache
Ambari with 26 conflicting merge commits that introduced
errors. RA-SZZ∗ did not blame any conflicting merge scenario
in eight projects, and four projects have only one blamed
conflicting merge commit. Figure 4 shows the percentage of
BICs linked either to conflicting merge scenarios and to regu-



Proportion of conflicting merge scenarios (%)

N
um

be
r 

of
 P

ro
je

ct
s

0 10 20 30 40 50

0

2

4

6

8

10

Fig. 3. Histogram with the proportion of conflicting merge scenarios per
project

lar commits over the projects. Most of the projects (72.24%)
had less than 10% of conflicting merge scenarios linked to
bug-introducing commits. On the other hand, eight projects
have more than 10% of the conflicting merge scenarios linked
to bug-introducing commits (see Figure 4). Project Apache
Phoenix presents the highest ratio—RA-SZZ∗ blamed all the
six conflicting merge commits—followed by Apache Ambari
with a ratio of 26 over 66 (39.39%)—in Lucene, the one
with the highest number of bug-introducing commits linked
to conflicting merge scenarios, the rate is 22.39%.

●●

●

m
er

ge
 c

on
fli

ct
re

gu
la

r 
co

m
m

it

0 20 40 60 80 100

Rate of bug−introducing commits (%)

Fig. 4. Percentage of bug-introducing commits (either due to conflicting
merge scenarios or regular commits)

When considering regular commits (305,262 observations),
RA-SZZ∗ blamed 29,095 commits that possibly introduced
bugs, which represents 9.53%. Figure 5 shows that the percent-
age of bug-introducing commits related to conflict resolution,
in the worst case, correspond to less than 4% of all bug-
introducing commits.

Some general information is necessary to understand our
findings. First, conflicting merge scenarios represent 0.52% of
the total number of all commits. Second, conflicting merge
scenarios blamed by RA-SZZ∗ represent 0.51% of all bug-
introducing commits (see Figure 5). These percentages indi-
cate that the occurrence of a bug introduced by a conflicting

Proportion of BICs linked to merge conflict resolution (%)

N
um

be
r 

of
 P

ro
je

ct
s

0 1 2 3 4

0

5

10

15

Fig. 5. Proportion of bug-introducing commits also linked to merge conflicts
resolution

merge scenario is equal to the occurrence of a conflicted
merge commit. We compare the distribution of the percent-
ages of bug-introducing commits emerging either (a) from
the set of conflicting merge scenarios or (b) from the set
of all the remaining commits (that is, the set of commits
that do not solve a merge conflict), using the Wilcoxon
signed-rank test. According to the analysis, we cannot
reject the null hypothesis that the two populations have a
similar distribution of bug-introducing commits (p-value =
0.2652 with confidence interval of 95%). Moreover, we ap-
plied the Cliff’s Delta effect size test to verify
the significance of the differences between both distributions,
revealing a small magnitude of the differences between the
bug introducing contribution of regular commits vs. conflicting
merge commits (Cliff’s delta = 0.2628).

Therefore, conflicting merge scenarios are not more
prone to introduce bugs than usual commits. That is,
9.43% of the conflicting merge scenarios introduce bugs,
while RA-SZZ∗ linked 9.53% of all commits as bug-
introducing changes. Besides, conflict resolution repre-
sents 0.51% of all bug-introducing commits. Nonethe-
less, this finding suggests that merge conflict resolution
is an important source of bugs, and 150 bugs have been
introduced due to conflicting merge resolution.

We also replicated our analyzes considering only non-XXL
and XXL scenarios, separately. Interestingly, when considering
only non-XXL scenarios—which corresponds to 75% of our
curated dataset of merge scenarios, the number of conflicting
merge scenarios drops from 1590 to 369 (23.20%). This
might suggest that XXL merge scenarios are more likely to
introduce conflicts—different from what has been reported
in previous research [30]. Moreover, the number of bug-
introducing commits linked to conflicting merge scenarios
drops from 150 to 20 (13.3% of all BICs linked to conflicting
merge scenarios). This suggests that complex merge scenarios
(XXL) cause more than 85% of all conflicting merge scenarios
linked to bug-introducing commits.



When considering the non-XXL group, RA-SZZ∗ blamed
5.42% of conflicting merge scenarios. On the other hand,
10.64% of the conflicting merge scenarios were linked to
bug-introducing commits in the XXL group. Since the num-
ber of BICs linked to conflicting merge scenarios appears
more frequently in XXL scenarios, we ran a new hypothesis
testing on this group. The results of the paired Wilcoxon
signed-rank test over this sample compared to the
sample of all commits, show that we still cannot reject
the null hypothesis that both distributions are identical (p-
value is 0.6089 with 95% confidence interval). The estimated
Cliff’s Delta between the distribution of conflicting merge
scenarios (the more complex ones) and regular commits is
0.277, meaning that the difference is small.

XXL conflicting merge scenarios are responsible for
more than 85% of the the conflicting merge scenarios
linked to bug-introducing commits. Nonetheless, we did
not find a significant difference in the likelihood of a
bug-introducing come from a regular commit or from a
XXL conflicting merge scenario.

Next, we investigate if the characteristics of a conflicting
merge scenario could help to predict when a conflict merge
scenario is more likely to introduce bugs (according to the
RA-SZZ∗ algorithm). To this end, we first filter out the non-
conflicting merge scenarios of our curated dataset and then
selected a couple of features from the literature [30, 31] to
use as predictors. Our feature set comprehends:

• The total of files changed in both branches
• The total number of contributors in both branches
• The total number of commits in both branches
• The total number of conflicting files
• The total number of days of development

0.68 0.76 0.42 0.37

0.8 0.51 0.2

0.54 0.26

0.18

files

authors

commits

days

au
th

or
s

co
m

m
its

da
ys

co
nf

lic
ts

−1.0

−0.5

0.0

0.5

1.0
Corr

Fig. 6. Spearman correlation of the features collected from conflicted merge
scenarios

As mentioned before, we compute these features by replay-
ing all merge scenarios. We then investigate the Spearman
correlation among these features (see the results in Figure 6).
Similar to previous studies [30, 31], the number of changed
files presents a moderate correlation coefficient (p-value =
0.37) while the number of active authors, the number of
commits, and the number of days have weak correlations with

TABLE II
PERFORMANCE OF THE TRAINING CLASSIFIERS, CONSIDERING ALL

CONFLICTING MERGE SCENARIOS (GROUP A) AND THE COMPLEX
CONFLICTING MERGE SCENARIOS (GROUP B)

Group Model Precision Recall f1-score

A Logistic Regression 0.26667 0.14286 0.18605
Decision Trees 0.15789 0.3000 0.20690
Random Forest 0.16667 0.46667 0.24561

B Logistic Regression 0.4000 0.3077 0.3478
Decision Trees 0.1159 0.8000 0.2025
Random Forest 0.1500 0.6000 0.2400

the number of conflicting files (coefficients < 0.3). On the
other hand, we found a strong correlation (coefficients ≥ 0.5)
among the other features (number of changed files, contribu-
tors, and commits) and a moderate correlation (coefficient =
0.42) between the number of days and the number of files
changed.

In the process of data preparation and feature engineering,
we explored our dataset to treat skewness on the predictors.
The distribution of the number of files in conflict is equal three
in the third quartile and we decided to run the classification
models for all conflicting merge scenarios and for the complex
merge scenarios—more than 2 files in conflict—separately.
According to the curated dataset, RA-SZZ∗ linked 9.43% of
all conflicting merge scenarios to BICs and linked 14.57%
of bug-introducing commits to complex conflicting merge
scenarios. Finally, we experimented with three classifiers—
Logistic Regression, Decision Trees, and Random Forest—
considering first all merge scenarios and then the complex
merge scenarios only.

Table II shows the performance results of the classifiers we
trained in this investigation. The results show that, overall,
based on the outcomes of the three classifiers, it is hard to
predict if a conflicting merge scenario will be responsible for
introducing bugs. That is, when considering all conflicting
merge scenarios, the Random Forest classifier presented the
best performance with a f1-score of 0.256, followed by
Decision Trees (f1-score = 0.207). Logistic Regression led
to a best performance when considering the complex merge
scenarios (f1-score = 0.348 and precision = 0.4), while
Decision Trees presented higher recall (80%) with f1-score
(0.20).

Based on the results of different classification models,
we consider that it is hard to predict when a conflicting
merge scenario is more likely to introduce a bug. In
the best scenario, the classification models achieved an
f1-score of 0.348.

C. To what extent co-change dependencies metrics correlate
to defect density?

The goal of this research question is to investigate the rela-
tionship between bug incidence and co-change dependencies.
This question has been investigated before by D’Ambros et al.



[14], though using only three systems, while we collected data
from 29 projects. According to their findings, bug predictions
models can be improved when considering co-change depen-
dencies (change-coupling in the previous work).

To answer this research question, we first use the change
history of the systems to compute the co-change dependencies
between software components (see Section III-D)—at the
coarse-grained level only (i.e., files and classes). From the co-
change dependencies, we compute two additional metrics, sim-
ilarly to the work by D’Ambros et al. [14]: Number of Coupled
Classes (NOCC) and Sum of Class Coupling (SOCC), using
n = 2 as threshold—which showed the best performance in
the previous work [14]. We use three datasets in this analysis.
The first dataset contains the co-change data, consisting of
observations with the name and the metrics NOCC and SOCC
of the components. The second dataset contains the change
history of all components—each row indicating that a commit
changed a given component. The third dataset contains all bug-
fixing commits of the systems, which we compute using the
first phase of RA-SZZ∗. We then merge these datasets and
compute the number of non bug-fixing (NBC) and bug-fixing
commits (BC) of every component. After that, we estimate the
buggy ratio (Br) of a component c using Eq. (1).

Br(c) =
BC(c)

NBC(c) +BC(c)
(1)

We use the Spearman correlation and simple linear regression
analysis to estimate the strength of the relationships between
NOCC and SOCC with the buggy ratio and the total number of
bug-fixing commits of a component. Simple linear regression
allows us to (a) investigate if there is a relationship between
NOCC and SOCC with the defect density of the components
(buggy ratio and number of bug-fixing commits) and also (b)
explain how strong the relationship between these features and
defect density are [52].

Table III shows some descriptive statistics from the co-
change metrics observations. Interestingly, considering our
final dataset, most of the observations rely on the interval from
four to 25 co-change dependencies (first and third quartiles,
respectively)—although we found a specific component with
1022 co-change dependencies. Since these unusual cases in-
crease the mean value of NOCC and SOCC, we decided to
remove the components having either NOCC > 25 or SOCC
> 75 from our dataset.

TABLE III
DESCRIPTIVE STATISTICS FOR THE NOCC AND SOCC

Metric Min. 1st Qu. Median Mean 3rd Qu. Max.

NOCC 1 4 11 19.40 25 1022
SOCC 2 10 30 68.04 75 5984

Figure 7 shows a matrix of correlation for the metrics
NOCC, SOCC, BFCs (number of bug-fixing commits), and
Ratio (Buggy Ratio). In our research, different from the work
by D’Ambros et al. [14], we found a small correlation between

the number of bug-fixing commits and the metrics NOCC and
SOCC. This might contradict their findings and suggest that
co-change dependencies are not effective predictors for defect
density. In addition, a correlation between NOCC and SOCC
with the total number of bug-fixing commits might actually
suggest that NOCC and SOCC correlate to the total number
of commits of a component—something that is expected. That
is, considering only the total of bug-fixing commits might
mislead the conclusions, since there is a difference in the
error proneness of a given component A with three bug-fixing
commits and 10 non-bug-fixing commits (a buggy ratio of
23%) and another component B with the same number of bug-
fixing commits and 20 non-bug-fixing commits (a buggy ratio
of 13%). Previous work only consider the absolute value of
number of bug-fixing commits. Accordingly, in Figure 7, we
find a negligible correlation between the metrics NOCC and
SOCC with the Buggy Ratio of a component, which might
better characterize defect density.

●

●

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
no

cc
so

c
ra

tio
bf

cs

nocc

soc

ratio

bfcs

Fig. 7. Correlation matrix between the metrics NOCC, SOCC, BFCs (number
of bug-fixing commits), and Ratio (Buggy Ratio)

We use linear regression models (m1.: Ratio ≈ β1 ×
NOCC + β0 and m2.: Ratio ≈ β1 × SOCC + β0) to
investigate if we could predict buggy ratio using the metrics
NOCC and SOCC. Although the p-values for both models
suggest that exist associations between these predictors and
the buggy ratio, the adjusted R2 is also close to zero (for both
models), supporting our findings that one cannot truly explain
the buggy ratio variation in terms of NOCC and SOCC.

Altogether, we argue that components with high co-
change dependencies are not more subject to defect
density than other components. This result contradicts
previous studies [14, 22, 43] that claim that co-change
dependencies metrics are good predictors to bug intro-
ducing changes.

We also replicate the correlation analysis to all individual
projects, considering the total number of bug-fixing commits
of a component and the metrics NOCC and SOCC. In more
than 80% of the projects, we found either a small (< 0.5) or
a negligible correlation (< 0.3) for both metrics.



V. DISCUSSION AND IMPLICATIONS

Our research reveals that merge conflict resolution is re-
sponsible for a significant number of bug-introducing changes.
From a total of 22,532 issues (characterized as bug-fixing
commits), 336 (1.49%) are due to conflict resolution. Although
one might consider this a small percentage, we argue that the
source of these bugs arises exclusively due to conflict merge
resolution. Researchers and tools developers could investigate
the use of better approaches to help developers on the task of
conflict resolution.

Besides that, we found that 9.43% of conflicting merge sce-
narios lead bug-introducing commits, revealing that commits
related to conflict resolution are not more likely to introduce
bugs (than regular commits that implement new features or fix
other bugs, for instance). This might indicate that conflicting
resolution is less error-prone than the literature suggests.
Practitioners can benefit from this result, being more confident
about the risks of introducing a bug when resolving merge
conflicts and before deciding to postpone merge-operations.

We also show evidence that co-change dependency metrics
do not correlate with defect density, contrasting with the
findings of previous studies [14, 43, 22]. A possible reason
for this discrepancy is that previous research works ground
their conclusions using a smaller set of systems. Due to these
conflicting results, we argue that further research should be
conducted, either to confirm or refute our findings that co-
change dependencies might not be efficient for predicting
bugs.

VI. THREATS TO VALIDITY

We leverage the SZZ framework to identify bug-fixing
commits as well as to trace the source of those bugs—and
then find the so called bug-introducing commits. Although,
SZZ has known limitations, as we present in Section II, some
of our study procedures mitigate part of its usage threats.

We highlight that (1) considering our curated dataset, 75%
of the issues reported on JIRA were linked to bug-fixing
commits in the first phase of SZZ; and (2) the SZZ im-
plementation we used in our research (RA-SZZ∗) was able
to link 51% of the bug-fixing commits to bug-introducing
commits. These numbers actually support the use of SZZ
in our research, mitigating part of the critics about the use
of SZZ. However, the set of bugs introduced and fixed in
a source code repository over time might go beyond those
handled by SZZ. For instance, a bug can be introduced and
fixed before it is even reported in a bug tracker tool. In
addition, some contributions might have not been correctly
linked by developers with the bug issues associated (using the
commit message). In spite of that, we also performed manual
validations to mitigate reliability issues in our results.

Trying to improve the quality of our datasets, we removed
several projects that we initially collected data from the
repositories. For instance, we established a minimum number
of 200 issues (1st quartile) on the JIRA issue database for each
project. We also excluded from our analysis two projects in
which the RA-SZZ∗ execution did not complete the process

of linking the bug-fixing commits to bug-introducing commits
within a time limit of 24 hours. We also removed from our
analysis projects that we considered outliers, for instance due
to its huge number of merge conflicts. As a final criteria,
we excluded projects in which RA-SZZ∗ linked a small
number of: (a) issues to bug-fixing commits, or (b) bug-fixing
commits to bug-introducing commits. Therefore, we reduced
the number of systems in our corpus, which might compromise
the external validity of our study. However, we believe that
this decision would not change our findings, because we still
collected a reasonable number of issues, and more than 75%
of them were linked to bug-fixing commits.

We probably did not collect all merge scenarios of the
systems, since it is also possible to integrate contributions
in a git repository using the rebase command—which
removes merge operations from the log history. There is some
controversial recommendations in the grey literature about
considering rebase as either a harmful or a good practice.
Nonetheless, our curated dataset presents a significant number
of merge scenario, which might suggest that rebase is not a
widespread practice in these projects.

To investigate the second research question, we had to
estimate the number of bugs related to each component (i.e.,
Java classes). As such, we identified the commits that (a)
affect a given class and (b) that also relate to bug fixes in
the commit message. To this end, we leverage the first phase
of the SZZ algorithm only. Although previous research works
did not use the SZZ algorithm [14, 22, 43], we believe that
our methodologies are quite similar (since previous works
also associate commits to the issues databases). Therefore, the
divergence of our findings is not full explained by our decision
to use the first phase of SZZ. Instead, this divergence is more
likely to occur due to our larger dataset of projects.

Also, to increase our confidence in our toolset for repro-
ducing merge scenarios, we cross-validate the information of
our dataset comprising merges and conflicts scenario with
other datasets available in the literature [26, 31]. Nonetheless,
despite using a curated dataset, we still believe that we
cannot generalize our results to scenarios that do not explore
the development practices of open source projects and use
languages different than Java.

VII. FINAL REMARKS

This paper has investigated the correlation between (a) con-
flict merge scenarios with bug-introducing commits and (b) co-
change dependencies with defect density. We extracted 22,532
bug-fixing commits and 21,189 merge scenarios from 29 Java
Apache projects and leverage RA-SZZ∗ to detect 29,245 bug-
introducing commits. We gave evidence that commits that
solve conflicting merge scenarios are not more likely to intro-
duce bugs than regular commits—though we found that 9.43%
of the conflicting merge scenarios lead to bug-introducing
changes. In addition, contrasting to previous research [14],
we found a small to negligible correlation between co-change
dependency metrics and defect density.



REFERENCES

[1] T. Ball, J.-M. Kim, A. A. Porter, and H. P. Siy, “If your version
control system could talk,” in ICSE Workshop on Process Mod-
elling and Empirical Studies of Software Engineering, vol. 11,
1997.

[2] A. Zeller, Why programs fail: a guide to systematic debugging.
Elsevier, 2009.

[3] M. Beller, N. Spruit, D. Spinellis, and A. Zaidman, “On the
dichotomy of debugging behavior among programmers,” in
Proceedings of the 40th International Conference on Software
Engineering, 2018, pp. 572–583.

[4] M. Beller, G. Gousios, and A. Zaidman, “How (much) do
developers test?” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 2. IEEE, 2015, pp.
559–562.

[5] K. Pan, S. Kim, and E. J. Whitehead, “Toward an understanding
of bug fix patterns,” Empirical Software Engineering, vol. 14,
no. 3, pp. 286–315, 2009.

[6] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan,
“The design space of bug fixes and how developers navigate
it,” IEEE Transactions on Software Engineering, vol. 41, no. 1,
pp. 65–81, 2014.

[7] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental
models: a study of developer work habits,” in Proceedings of the
28th international conference on Software engineering. ACM,
2006, pp. 492–501.

[8] K. E. Emam, W. Melo, and J. C. Machado, “The prediction
of faulty classes using object-oriented design metrics,” J. Syst.
Softw., vol. 56, no. 1, p. 63–75, Feb. 2001.

[9] M. D’Ambros, A. Bacchelli, and M. Lanza, “On the impact of
design flaws on software defects,” in Proceedings of the 10th
International Conference on Quality Software, QSIC 2010,
Zhangjiajie, China, 14-15 July 2010, J. Wang, W. K. Chan,
and F. Kuo, Eds. IEEE Computer Society, 2010, pp. 23–31.
[Online]. Available: https://doi.org/10.1109/QSIC.2010.58

[10] A. Bacchelli, M. D’Ambros, and M. Lanza, “Are popular
classes more defect prone?” in Fundamental Approaches to
Software Engineering, 13th International Conference, FASE
2010. Paphos, Cyprus, ser. Lecture Notes in Computer
Science, D. S. Rosenblum and G. Taentzer, Eds., vol.
6013. Springer, 2010, pp. 59–73. [Online]. Available:
https://doi.org/10.1007/978-3-642-12029-9 5

[11] A. E. Hassan, “Predicting faults using the complexity of code
changes,” in 2009 IEEE 31st International Conference on
Software Engineering, 2009, pp. 78–88.

[12] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis
of the efficiency of change metrics and static code attributes
for defect prediction,” in 2008 ACM/IEEE 30th International
Conference on Software Engineering, 2008, pp. 181–190.

[13] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?” in ACM sigsoft software engineering notes,
vol. 30. ACM, 2005, pp. 1–5.

[14] M. D’Ambros, M. Lanza, and R. Robbes, “On the relationship
between change coupling and software defects,” in 2009 16th
Working Conference on Reverse Engineering, Oct 2009, pp.
135–144.

[15] E. Kouroshfar, “Studying the effect of co-change dispersion on
software quality,” in 2013 35th International Conference on
Software Engineering (ICSE), 2013, pp. 1450–1452.

[16] G. A. Oliva and M. A. Gerosa, “Experience report: How
do structural dependencies influence change propagation? an
empirical study,” in 2015 IEEE 26th International Symposium
on Software Reliability Engineering (ISSRE), 2015, pp. 250–
260.

[17] D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho,
and A. E. Hassan, “A framework for evaluating the results of
the szz approach for identifying bug-introducing changes,” IEEE

Transactions on Software Engineering, vol. 43, no. 7, pp. 641–
657, 2017.

[18] S. Horwitz, J. Prins, and T. Reps, “Integrating noninterfering
versions of programs,” ACM Trans. Program. Lang. Syst.,
vol. 11, no. 3, p. 345–387, Jul. 1989. [Online]. Available:
https://doi.org/10.1145/65979.65980

[19] C. Bird and T. Zimmermann, “Assessing the value of
branches with what-if analysis,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, ser. FSE’12. New York, NY,
USA: Association for Computing Machinery, 2012. [Online].
Available: https://doi.org/10.1145/2393596.2393648

[20] H. C. Estler, M. Nordio, C. A. Furia, and B. Meyer, “Awareness
and merge conflicts in distributed software development,” in
2014 IEEE 9th International Conference on Global Software
Engineering, 2014, pp. 26–35.

[21] P. Knab, M. Pinzger, and A. Bernstein, “Predicting defect
densities in source code files with decision tree learners,” in
Proceedings of the 2006 International Workshop on Mining
Software Repositories, ser. MSR’06. New York, NY, USA:
Association for Computing Machinery, 2006, p. 119–125.
[Online]. Available: https://doi.org/10.1145/1137983.1138012

[22] S. Kirbas, A. Sen, B. Caglayan, A. Bener, and R. Mahmu-
togullari, “The effect of evolutionary coupling on software
defects: An industrial case study on a legacy system,” in
Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, ser.
ESEM’14. New York, NY, USA: Association for Computing
Machinery, 2014.

[23] M. L. Guimarães and A. R. Silva, “Improving early detection
of software merge conflicts,” in Proceedings of the 34th Inter-
national Conference on Software Engineering. IEEE Press,
2012, pp. 342–352.

[24] A. Sarma, G. Bortis, and A. Van Der Hoek, “Towards supporting
awareness of indirect conflicts across software configuration
management workspaces,” in Proceedings of the twenty-second
IEEE/ACM international conference on Automated software
engineering, 2007, pp. 94–103.

[25] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson,
“Fastdash: a visual dashboard for fostering awareness in soft-
ware teams,” in Proceedings of the SIGCHI conference on
Human factors in computing systems, 2007, pp. 1313–1322.

[26] S. Apel, O. Leßenich, and C. Lengauer, “Structured merge
with auto-tuning: balancing precision and performance,” in
Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering. ACM, 2012, pp. 120–
129.

[27] O. Leßenich, S. Apel, and C. Lengauer, “Balancing precision
and performance in structured merge,” Automated Software
Engineering, vol. 22, no. 3, pp. 367–397, 2015.

[28] G. Cavalcanti, P. Borba, and P. Accioly, “Should we replace
our merge tools?” in 2017 IEEE/ACM 39th International Con-
ference on Software Engineering Companion (ICSE-C). IEEE,
2017, pp. 325–327.

[29] P. Accioly, P. Borba, and G. Cavalcanti, “Understanding semi-
structured merge conflict characteristics in open-source java
projects,” Empirical Software Engineering, vol. 23, no. 4, pp.
2051–2085, 2018.

[30] O. Leßenich, J. Siegmund, S. Apel, C. Kästner, and C. Hunsen,
“Indicators for merge conflicts in the wild: survey and empirical
study,” Automated Software Engineering, vol. 25, no. 2, pp.
279–313, 2018.

[31] M. Owhadi-Kareshk, S. Nadi, and J. Rubin, “Predicting merge
conflicts in collaborative software development,” in 2019
ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). IEEE, 2019, pp. 1–11.

[32] J. Baumgartner, R. Kanzelman, H. Mony, and V. Paruthi,



“Incremental speculative merging,” Apr. 26 2011, uS Patent
7,934,180.

[33] B. K. Kasi and A. Sarma, “Cassandra: Proactive conflict mini-
mization through optimized task scheduling,” in 2013 35th In-
ternational Conference on Software Engineering (ICSE). IEEE,
2013, pp. 732–741.

[34] P. Accioly, P. Borba, L. Silva, and G. Cavalcanti, “Analyzing
conflict predictors in open-source java projects,” in Proceed-
ings of the 15th International Conference on Mining Software
Repositories, 2018, pp. 576–586.

[35] I. Ahmed, C. Brindescu, U. A. Mannan, C. Jensen, and
A. Sarma, “An empirical examination of the relationship be-
tween code smells and merge conflicts,” in 2017 ACM/IEEE
International Symposium on Empirical Software Engineering
and Measurement (ESEM). IEEE, 2017, pp. 58–67.

[36] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol,
“An exploratory study of the impact of antipatterns on class
change-and fault-proneness,” Empirical Software Engineering,
vol. 17, no. 3, pp. 243–275, 2012.

[37] D. Beyer and A. Noack, “Clustering software artifacts based on
frequent common changes,” in 13th International Workshop on
Program Comprehension (IWPC’05), 2005, pp. 259–268.

[38] M. C. de Oliveira, R. Bonifácio, G. N. Ramos, and M. Ribeiro,
“Unveiling and reasoning about co-change dependencies,” in
Proceedings of the 15th International Conference on Modular-
ity, MODULARITY 2016, Málaga, Spain. ACM, 2016, pp.
25–36.

[39] N. Ajienka and A. Capiluppi, “Understanding the interplay
between the logical and structural coupling of software classes,”
Journal of Systems and Software, vol. 134, pp. 120 – 137, 2017.

[40] L. L. Silva, M. T. Valente, and M. de Almeida Maia, “Co-change
clusters: Extraction and application on assessing software mod-
ularity,” LNCS Trans. Aspect Oriented Softw. Dev., vol. 12, pp.
96–131, 2015.

[41] M. C. de Oliveira, D. Freitas, R. Bonifácio, G. Pinto,
and D. Lo, “Finding needles in a haystack: Leveraging
co-change dependencies to recommend refactorings,” J.
Syst. Softw., vol. 158, 2019. [Online]. Available:
https://doi.org/10.1016/j.jss.2019.110420

[42] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting
fault incidence using software change history,” IEEE Transac-
tions on Software Engineering, vol. 26, no. 7, pp. 653–661,
2000.

[43] M. Steff and B. Russo, “Co-evolution of logical couplings and
commits for defect estimation,” in 2012 9th IEEE Working
Conference on Mining Software Repositories (MSR), 2012, pp.
213–216.

[44] G. Rodrı́guez-Pérez, G. Robles, and J. M. González-Barahona,
“Reproducibility and credibility in empirical software engineer-
ing: A case study based on a systematic literature review of the
use of the szz algorithm,” Information and Software Technology,
vol. 99, pp. 164–176, 2018.

[45] C. Williams and J. Spacco, “Szz revisited: verifying when
changes induce fixes,” in Proceedings of the 2008 workshop
on Defects in large software systems, 2008, pp. 32–36.

[46] E. C. Neto, D. A. da Costa, and U. Kulesza, “Revisiting and
improving szz implementations,” in 2019 ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and
Measurement (ESEM). IEEE, 2019, pp. 1–12.

[47] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature:
how misclassification impacts bug prediction,” in Proceedings
of the 2013 international conference on software engineering.
IEEE Press, 2013, pp. 392–401.

[48] G. Rodrı́guez-Pérez, J. M. Gonzalez-Barahona, G. Robles,
D. Dalipaj, and N. Sekitoleko, “Bugtracking: A tool to assist
in the identification of bug reports,” in IFIP International
Conference on Open Source Systems. Springer, 2016, pp. 192–
198.

[49] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner,
“Semistructured merge: rethinking merge in revision control
systems,” in Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software
engineering, 2011, pp. 190–200.

[50] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M.
German, and D. Damian, “The promises and perils of mining
github,” in Proceedings of the 11th Working Conference on
Mining Software Repositories, ser. MSR 2014. New York, NY,
USA: Association for Computing Machinery, 2014, p. 92–101.
[Online]. Available: https://doi.org/10.1145/2597073.2597074

[51] J. Maindonald and W. J. Braun, Data Analysis and Graphics
Using R: An Example-Based Approach, 3rd ed., ser. Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge
University Press, 2010.

[52] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduc-
tion to Statistical Learning: With Applications in R. Springer
Publishing Company, Incorporated, 2014.


