
A Comprehensive Study on the Energy Efficiency
of Java’s Thread-Safe Collections

Gustavo Pinto1 Kenan Liu2 Fernando Castor3 Yu David Liu2
1IFPA, Brazil 2SUNY Binghamton, USA 3UFPE, Brazil

Abstract—Java programmers are served with numerous
choices of collections, varying from simple sequential ordered
lists to sophisticated hashtable implementations. These choices
are well-known to have different characteristics in terms of
performance, scalability, and thread-safety, and most of them are
well studied. This paper analyzes an additional dimension, energy
efficiency. We conducted an empirical investigation of 16 collec-
tion implementations (13 thread-safe, 3 non-thread-safe) grouped
under 3 commonly used forms of collections (lists, sets, and map-
pings). Using micro- and real world-benchmarks (TOMCAT and
XALAN), we show that our results are meaningful and impactful.
In general, we observed that simple design decisions can greatly
impact energy consumption. In particular, we found that using a
newer hashtable version can yield a 2.19x energy savings in the
micro-benchmarks and up to 17% in the real world-benchmarks,
when compared to the old associative implementation. Also, we
observed that different implementations of the same thread-
safe collection can have widely different energy consumption
behaviors. This variation also applies to the different operations
that each collection implements, e.g., a collection implementation
that performs traversals very efficiently can be more than an
order of magnitude less efficient than another implementation of
the same collection when it comes to insertions.

I. INTRODUCTION

A question that often arises in software development forums
is: “since Java has so many collection implementations, which
one should I use?”1. Answers to this question come in different
flavors: these collections serve for different purposes and have
different characteristics in terms of performance, scalability
and thread-safety. In this study, we consider one additional at-
tribute: energy efficiency. In an era where mobile platforms are
prevalent, there is considerable evidence that battery usage is a
key factor for evaluating and adopting mobile applications [1].
Energy consumption estimation tools do exist [2], [3], [4], but
they do not provide direct guidance on energy optimization,
i.e., bridging the gap between understanding where energy is
consumed and understanding how the code can be modified
in order to reduce energy consumption.

Energy optimization is traditionally addressed by hardware-
level (e.g., [5], [6]) and system-level approaches (e.g., [7],
[8]). However, it has been gaining momentum in recent
years through application-level software engineering tech-
niques (e.g., [9], [10], [11]). The overarching premise of this
emerging direction is that the high-level knowledge from soft-
ware engineers on application design and implementation can
make significant impact on energy consumption, as confirmed

1http://stackoverflow.com/search?q=which+data+structure+use+java+is:
question

by recent empirical studies [12], [13], [14], [15]. Moreover,
energy efficiency, similarly to performance and reliability, is a
systemic property. Thus, it must be tackled across multiple
levels of the system stack. The space for application-level
energy optimization, however, is diverse.

In this paper, we elucidate the energy consumption of
different Java thread-safe collections running on parallel ar-
chitectures. This is a critical direction at the junction of data-
intensive computing and parallel computing, which deserves
more investigation due to at least three reasons:

• Collections are one of the most important building blocks
of computer programming. Multiplicity — a collection
may hold many pieces of data items — is the norm of
their use, and it often contributes to significant memory
pressure, and performance problems in general, of mod-
ern applications where data are often intensive [16], [17].

• Not only high-end servers but also desktop machines,
smartphones, and tablets need concurrent programs to
make best use of their multi-core hardware. A CPU with
more cores (say 32) often dissipates more power than
one with fewer cores (say 1 or 2) [18]. In addition, in
mobile platforms such as Android, due to responsiveness
requirements, concurrency in the form of asynchronous
operations is the norm [19].

• Mainstream programming languages often provide a
number of implementations for the same collection and
these implementations have potentially different charac-
teristics in terms of energy efficiency [20], [21].

Through extensive experiments conducted in a multi-core
environment, we correlate energy behaviors of 13 thread-safe
implementations of Java collections, grouped by 3 well-known
interfaces (List, Set, and Map), and their turning knobs. Our
research is motivated by the following questions:

RQ1. Do different implementations of the same collection have
different impacts on energy consumption?

RQ2. Do different operations in the same implementation of a
collection consume energy differently?

RQ3. Do collections scale, from an energy consumption
perspective, with an increasing number of concurrent
threads?

RQ4. Do different collection configurations and usages have
different impacts on energy consumption?

In order to answer RQ1 and RQ2, we select and analyze the
behaviors of three common operations — traversal, insertion
and removal — for each collection implementation. To answer

http://stackoverflow.com/search?q=which+data+structure+use+java+is:question
http://stackoverflow.com/search?q=which+data+structure+use+java+is:question


RQ3, we analyze how different implementations scale in the
presence of multiple threads. In this experiment, we cover
the spectrum including both under-provisioning (the number
of threads exceeds the number of CPU cores) and over-
provisioning (the number of CPU cores exceeds the number of
threads). In RQ4, we analyze how different configurations —
such as the load factor and the initial capacity of the collection
— impact energy consumption.

We analyze energy-performance trade-offs in diverse set-
tings that may influence the high-level programming decisions
of energy-aware programmers. We apply our main findings
into two well-known applications (XALAN and TOMCAT). To
gain confidence in our results in the presence of platform
variations and measurement environments, we employ two
machines with different architectures (32-core AMD vs. 16-
core Intel). We further use two distinct energy measurement
strategies, relying on an external energy meter, and internal
Machine-Specific Registers (MSRs), respectively.

The main finding of this work is that, in the context of
Java’s thread-safe collections, simple changes can reduce the
energy consumption considerably. In our micro-benchmarks,
differences of more than 50% between data structure im-
plementations were commonplace. Moreover, in two real-
world applications analyzed, overall reductions of 9.32 and
17.82% in energy consumption could be achieved. This result
has a clear implication: Tools to aid developers in quickly
refactoring programs to switch between different data structure
implementations can be useful if energy is important.

In addition, similarly to previous work targeting concurrent
programs [21], [15], [2], we found that execution time is not
always a reliable indicator for energy consumption. This is
particularly true for various Map implementations. In other
words, the consumption of power — the rate of energy con-
sumption — is not a constant across different collection im-
plementations. Furthermore, different operations of the same
implementation have different energy footprints. For example,
a removal operation in a ConcurrentSkipListMap can
consume more than 4 times of energy than an insertion to the
same data structure.

II. RELATED WORK

The energy impacts of different design decisions have been
previously investigated in several empirical studies. These
studies varied from constructs for managing concurrent ex-
ecution [15], design patterns [22], cloud offloading [10], [23],
[24], VM services [25], GPUs [26], and code obfuscation [27].
In particular, Zhanget al. [24] presented a mechanism for au-
tomatically refactoring an Android app into one implementing
the on-demand computation offloading design pattern, which
can transfer some computation-intensive tasks from a smart-
phone to a server so that the task execution time and battery
power consumption of the app can be reduced significantly.
Li et al. [12] presented an evaluation of a set of programming
practices suggested in the official Android developers web
site. They observed that some practices such as the network
packet size can provide impressive energy savings, while

others, such as limiting memory usage, had minimal impact on
energy usage. Vallina-Rodriguez et al. [28] surveys the energy-
efficient software-centric solutions on mobile devices, ranging
from operating system solutions to energy savings via process
migration to the cloud and protocol optimizations. Lima et
al. [21] studied energy consumption of thread management
constructs and data structures in a lazy purely functional
programming language, Haskell. Although they found that
there is no clear universal winner, in certain circumstances,
choosing one data sharing primitive (MVar) over another
(TMVar) can yield 60% energy savings.

Java collections are the focus of several studies [16], [29],
[30], although only few of them studied their energy charac-
teristics [31], [32], [20]. Previously, we have presented a pre-
liminary study on the energy consumption of the Java thread-
safe collections [31]. This current study greatly expands the
previous study, attempting to answer two additional research
questions. Also, in this current submission, we employ two dif-
ferent energy measurement methods in two different machines,
instead of just one, as reported in the initial study. Finally, we
also applied our findings to two real-world applications.

To the best of our knowledge, three other studies intersect
with our goal of understanding the energy consumption of Java
collections [32], [20], [33]. SEEDS [32] is a general decision-
making framework for optimizing software energy consump-
tion. The authors demonstrated how SEEDS can identify
energy-inefficient uses of Java collections, and help automate
the process of selecting more efficient ones. Hasan et al. [20]
investigated collections grouped with the same interfaces
(List, Set, and Map). Among the findings, they found that
the way that one inserts in a list (i.e., in the beginning, in the
middle, or in the end) can greatly impact energy consumption.
These studies, however, do not focus on concurrent collections.
Finally, the study of Pereira [33] although analyzed concurrent
implementations of Java collections, they did not use two
different environments or energy consumption measurements.
Therefore our study can be seen as complementary to theirs.

III. STUDY SETUP

Here we describe the benchmarks, the infrastructure, and
the methodology that we used to perform the experiments.

A. Benchmarks

The benchmarks used in this study consist of 16 commonly
used collections (13 thread-safe, 3 non-thread-safe) available
in the Java programming language. Our focus is on the thread-
safe implementations of the collections. Hence, for each col-
lection, we selected a single non-thread-safe implementation
to serve as a baseline. We analyzed insertion, removal and
traversal operations. We grouped these implementations by the
logical collection they represent, into three categories:

Lists (java.util.List): Lists are ordered
collections that allow duplicate elements. Using this
collection, programmers can have precise control over where
an element is inserted in the list. The programmer can access
an element using its index, or traverse the elements using an



Iterator. Several implementations of this collection are
available in the Java language. We used ArrayList, which
is not thread-safe, as our baseline, since it is the simplest
and most common non-thread-safe list implementation used.
We studied the following thread-safe List implementations:
Vector, Collections.synchronizedList(), and
CopyOnWriteArrayList. The main difference between
Vector and Collections.synchronizedList()
is their usage pattern in programming. With
Collections.synchronizedList(), the programmer
creates a wrapper around the current List implementation,
and the data stored in the original List object does
not need to be copied into the wrapper object. It is
appropriate in cases where the programmer intends to hold
data in a non-thread-safe List object, but wishes to add
synchronization support. With Vector, on the other hand,
the data container and the synchronization support are unified
so it is not possible to keep an underlying structure (such
as LinkedList) separate from the object managing the
synchronization. CopyOnWriteArrayList creates a
copy of the underlying ArrayList whenever a mutation
operation (e.g., using the add or set methods) is invoked.

Maps (java.util.Map): Maps are objects that map
keys to values. Logically, the keys of a map cannot
be duplicated. Each key is uniquely associated with a
value. An insertion of a (key, value) pair where the key
is already associated with a value in the map results
in the old value being replaced by the new one. Our
baseline is LinkedHashMap, instead of the more
commonly used HashMap. This is because the latter
causes a non-termination bug during our experiments [34].
Our choice of thread-safe Map implementations includes
Hashtable, Collections.synchronizedMap(),
ConcurrentSkipListMap, ConcurrentHashMap,
and ConcurrentHashMapV8. The difference between
ConcurrentHashMap and ConcurrentHashMapV8
is that the latter is an optimized version released in Java
1.8, while the former is the version present in the JDK
until Java 1.7. While all Map implementations share similar
functionalities and operate on a common interface, they are
particularly known to differ in the order of element access at
iteration time. For instance, while LinkedHashMap iterates
in the order in which the elements were inserted into the
map, a Hashtable makes no guarantees about the iteration
order.

Sets (java.util.Set): Sets model the mathematical
set abstraction. Unlike Lists, Sets do not count
duplicate elements, and are not ordered. Thus, the
elements of a set cannot be accessed by their indices,
and traversals are only possible using an Iterator.
Among the available implementations, we used
LinkedHashSet, which is not thread-safe, as our
baseline. Our selection of thread-safe Set implementations
includes Collections.synchronizedSet(),
ConcurrentSkipListSet, ConcurrentHashSet,

CopyOnWriteArraySet, and
ConcurrentHashSetV8. The latter is the version
of ConcurrentHashSet available in Java 1.8. It
should be noted that both ConcurrentHashSet and
ConcurrentHashSetV8 are not top-level classes readily
available in the JDK library. Instead, they can be obtained
by invoking the newSetFromMap() method of the
Collections class. The returned Set object observes the
same ordering as the underlying map.

B. Experimental Environment

To gain confidence in our results in the presence of plat-
form variations, we run each experiment on two significantly
different platforms:
System#1 : A 2×16-core AMD Opteron 6378 processor
(Piledriver microarchitecture), 2.4GHz, with 64GB of DDR3
1600 memory. It has three cache levels (L1, L2, L3): L1 with
32KB per core, L2 with 256KB per core, and L3 20480 (Smart
cache). It is running Debian 3.2.46-1 x86-64 Linux (kernel
3.2.0-4-amd64), and Oracle HotSpot 64-Bit Server VM (build
21) JDK version 1.7.0 11.
System#2 : A 2×8-core (32-cores when hyper-threading is
enabled) Intel(R) Xeon(R) E5-2670 processor, 2.60GHz, with
64GB of DDR3 1600 memory. It has three cache levels (L1,
L2, L3): L1 with 48KB per core, L2 with 1024KB per core,
and L3 20480 (Smart cache). It is running Debian 6 (kernel
3.0.0-1-amd64) and Oracle HotSpot 64-Bit Server VM (build
14), JDK version 1.7.0 71.

When we performed the experiments with Sets and
Maps, we employed the jsr166e library2, which contains
the ConcurrentHashMapV8 implementation. Thus, these
experiments do not need to be executed under Java 1.8.

We also used two different energy consumption mea-
surement approaches. This happens because one of our
measurement approach relies on Intel processors, while
System#1 uses an AMD one.

For System#1, energy consumption is measured through
current meters over power supply lines to the CPU module.
Data is converted through an NI DAQ and collected by NI
LabVIEW SignalExpress with 100 samples per second and
the unit of the current sample is deca-ampere (10 ampere).
Since the supply voltage is stable at 12V, energy consumption
is computed as the sum of current samples multiplied by 12×
0.01×10. We measured the “base” power consumption of the
OS when there is no JVM (or other application) running. The
reported results are the measured results modulo the “base”
energy consumption.

For System#2, we used jRAPL [4], a framework that
contains a set of APIs for profiling Java programs running
on CPUs with Running Average Power Limit (RAPL) [6]
support. Originally designed by Intel for enabling chip-level
power management, RAPL is widely supported in today’s Intel
architectures, including Xeon server-level CPUs and the popu-
lar i5 and i7 processors. RAPL-enabled architectures monitor

2Available at: http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166//

http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166//


the energy consumption information and store it in Machine-
Specific Registers (MSRs). Due to architecture design, RAPL
support for System#2 can access CPU core, CPU uncore
data (i.e., caches and interconnects), and in addition DRAM
energy consumption data. RAPL-based energy measurement
has appeared in recent literature (e.g., [35], [13], [36]); its
precision and reliability have been extensively studied [37].

As we shall see in the experiments, DRAM power consump-
tion is nearly constant. In other words, even though our meter-
based measurement strategy only considers the CPU energy
consumption, it is still indicative of the relative energy con-
sumptions of different collection implementations. It should be
noted that the stability of DRAM power consumption through
RAPL-based experiments does not contradict the established
fact that the energy consumption of memory systems is highly
dynamic [38]. In that context, memory systems subsume the
entire memory hierarchy, and most of the variations are caused
by caches [39] — part of the “CPU uncore data” in our
experiments.

All experiments were performed with no other load on the
OS. We conform to the default settings of both the OS and
the JVM. Several default settings are relevant to this context:
(1) the power management of Linux is the default ondemand
governor, which dynamically adjusts CPU core frequencies
based on system workloads. (2) For the JVM, the parallel
garbage collector is used, and just-in-time (JIT) compilation is
enabled. The initial heap size and maximum heap size are set
to be 1GB and 16GB respectively. We run each benchmark 10
times within the same JVM; this is implemented by a top-level
10-iteration loop over each benchmark. The reported data is
the average of the last 3 runs. We chose the last three runs
because, according to a recent study, JIT execution tends to
stabilize in the latter runs [15]. Hyper-threading is enabled and
turbo Boost feature is disabled on System#2.

IV. STUDY RESULTS

Here we report the results of our experiments. Results for
RQ1 and RQ2 are presented in Section IV-A, describing the
impact of different implementations and operations on energy
consumption. In Section IV-B we answer RQ3 by investigating
the impact of accessing data collections with different numbers
of threads. Finally, in Section IV-C we answer RQ4 by
exploring different “tuning knobs” of data collections. Due
to space constraints, we will not show performance figures.
When relevant, we discuss performance result in the text.

A. Different Collection Implementations and Operations

For RQ1 and RQ2, we set the number of threads to 32 and,
for each group of collections, we performed and measured
insertion, traversal and removal operations.

1) For the insertion operation, we start with an empty
collection, and each thread inserts 100,000 elements. At
the end the total number of elements inside the collection
is 3,200,000. To avoid duplicate elements, each insertion
operation adds a String with value thread-id + “-” +
current-index.

2) For the traversal operation, each thread traverses the
entire collection generated by the insertion operation,
i.e., over 3,200,000 elements. On Sets and Maps, we
first get the list of keys inserted, and then we iterate
over these keys in order to get their values. On Lists,
it is performed using a top-level loop over the collection,
accessing each element by its index using the get(int
i) method.

3) For the removal operation, we start with the collection
with 3,200,000 elements, and remove the elements one
by one, until the collection becomes empty. For Maps
and Sets, the removals are based on keys. On Lists,
the removal operation is based on indexes, and occurs
in-place — that is, we do not traverse the collection to
look up for a particular element before removal.

Lists. Figure 1 shows the energy consumption (bars) and
power consumption (lines) results of our List experiments.
Each bar represents one List implementation. Each bar
represents the total amount of energy consumed. The three
graphs at top of the figure are collected from System#1,
whereas the three graphs in the bottom are from System#2.
Figures for Traversal, Insertion, and Removal are presented,
respectively, from left to right. We do not show the figures for
CopyOnWriteArrayList because the results for insertion
and removal are an outlier and would otherwise skew the
proportion of the figures.

First, we can observe that synchronization does play
an important role here. As we can see, ArrayList, the
non-thread-safe implementation, consumes much less energy
than the other ones, thanks to its lack of synchronization.
Vector and Collection.synchronizedList()
are similar in energy behaviors. The greatest difference
is seen on insertion, on System#1, in which the former
consumed about 24.21% less energy than the latter. Vector
and Collection.synchronizedList() are strongly
correlated in their implementations, with some differences.
While both of them are thread-safe on insertion and removal
operations, Collection.synchronizedList()
is not thread-safe on traversals using an Iterator,
whereas Iterators over Vector are thread-safe.
CopyOnWriteArrayList, in contrast, is thread-safe in
all operations. However, it does not need synchronization on
traversal operations, which makes this implementation more
efficient than the thread-safe ones (it consumes 46.38x less
energy than Vector on traversal).

Furthermore, different operations can have different im-
pacts. For traversal, Vector presents the worst result among
the List implementations: it consumes 14.58x more energy
and 7.9x more time than the baseline on System#1(84.65x
and 57.99x on System#2, respectively). This is due to
both Vector and Collection.synchronizedList()
needing to synchronize on traversal operations. In contrast, the
CopyOnWriteArrayList only requires synchronization
on operations that modify the list.

For insertion operations, ArrayList consumes the



System#1

AL VEC CSL
0

5

10

15

20

25

30

35

40

E
n
e
rg
y
 (
J)

0

10

20

30

40

50

Po
w
e
r 
(W

)

AL VEC CSL
0

10

20

30

40

50

60

70

E
n
e
rg
y
 (
J)

0

10

20

30

40

50

Po
w
e
r 
(W

)

AL VEC CSL
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

E
n
e
rg
y
 (
J)

0

10

20

30

40

Po
w
e
r 
(W

)

System#2

AL VEC CSL
0

5

10

15

20

25

30

35

40

E
n
e
rg
y
 (
J) DRAM

Uncore
CPU

0

10

20

30

40

Po
w
e
r 
(W

)

Uncore CPU DRAM

AL VEC CSL
0

5

10

15

20

25

30

35

40

45

E
n
e
rg
y
 (
J) DRAM

Uncore
CPU

0

10

20

30

40

Po
w
e
r 
(W

)

Uncore CPU DRAM
AL VEC CSL

0

50000

100000

150000

200000

250000

E
n
e
rg
y
 (
J) DRAM

Uncore
CPU

0

5

10

15

20

25

30

Po
w
e
r 
(W

)

Uncore CPU DRAM

Traversal Insertion Removal

Fig. 1. Energy and power results for traversal, insertion and removal operations for different List implementations. Bars denote energy consumption and
lines denote power consumption. AL means ArrayList, VEC means Vector, and CSL means Collections.synchronizedList().

least energy for both System#1 and System#2.
When comparing the thread-safe implementations,
Collections.synchronizedList() consumes
1.30x more energy than Vector (1.24x for execution
time) on System#1. On System#2, however,
they consume almost the same amount of energy
(Collections.synchronizedList() consumes
1.01x more energy than Vector). On the other hand,
CopyOnWriteArrayList consumes a total of 6,843.21 J,
about 152x more energy than Vector on System#1. This
happens because, for each new element added to the list,
the CopyOnWriteArrayList implementation needs to
synchronize and create a fresh copy of the underlying array
using the System.arraycopy() method. As discussed
elsewhere [15], [40], even though this behavior can be
observed in sequential applications, it is more evident in
highly parallel applications, when several processors are
busy making copies of the collection, preventing them from
doing important work. Although this behavior makes this
implementation thread-safe, it is ordinarily too costly to
maintain the collection in a highly concurrent environment
where insertions are not very rare events.

Moreover, removals usually consume much more energy
than the other operations. For instance, removal on Vector
consumes about 778.88x more energy than insertion on
System#1. Execution time increases similarly, for instance,
it took about 92 seconds to complete a removal operation on
Vector. By contrast, insertions on a Vector took about
1.2 seconds, on average. We believe that several reasons can
explain this behavior. First, removals need to compute the
size of the collection in each iteration of the for loop and,
as we shall see in Section IV-D, it can greatly impact both
performance and energy consumption. The second reason is
that each call to the List.remove() method leads to a call
to the System.arrayCopy() method in order to resize

the List, since all these implementations of List are built
upon arrays. In comparison, insertion operations only lead to
a System.arrayCopy() call when the maximum number
of elements is reached.

Power consumption also deserves attention. Since
System.arrayCopy() is a memory intensive operation,
power consumption decreases, and thus, execution time
increases. Moreover, for most cases, power consumption
follows the same shape as energy. Since energy consumption
is the product of power consumption and time, when power
consumption decreases and energy increase, execution time
tends to increase. This is what happens on removal on
System#2. The excessive memory operations on removals,
also observed on DRAM energy consumption (the black,
top-most part of the bar), prevents the CPU from doing useful
work, which increases the execution time.

We also observed that the baseline benchmark on
System#2 consumes the least energy when compared to
the baseline on System#1. We atribute that to our energy
measurement approaches. While RAPL-based measurement
can be efficient in retrieving only the necessary information
(for instance, package energy consumption), our hardware-
based measurement gathers energy consumption information
pertaining to everything that happens in the CPU. Such noise
can be particularly substantial when the execution time is
small.

For all aforementioned cases, we observed that energy fol-
lows the same shape as execution time. This result goes in the
line of recent studies, that observed that energy and time are
often not correlated [2], [13], [15], which is particularly true
for concurrent applications. For the List implementations,
however, we believe that developers can safely use time as a
proxy for energy, which can be a great help when refactoring
an application to consume less energy.
Maps. Figure 2 presents a different picture for the Map



System#1

LHM HT CSM SLM CHM CHMV8
0

500

1000

1500

2000

2500

3000

E
n
e
rg
y
 (
J)

0

20

40

60

80

100

Po
w
e
r 
(W

)

LHM HT CSM SLM CHM CHMV8
0

20

40

60

80

100

120

140

160

E
n
e
rg
y
 (
J)

0

20

40

60

80

100

120

140

Po
w
e
r 
(W

)

LHM HT CSM SLM CHM CHMV8
0

50

100

150

200

250

E
n
e
rg
y
 (
J)

0

20

40

60

80

100

Po
w
e
r 
(W

)

System#2

LHM HT CSM SLM CHM CHMV8
0

10

20

30

40

50

60

70

E
n
e
rg

y
 (
J) DRAM

Uncore
CPU

0

20

40

60

80

100

120

140

Po
w
e
r 
(W

)

Uncore CPU DRAM

LHM HT CSM SLM CHM CHMV8
0

50

100

150

200

E
n
e
rg
y
 (
J) DRAM

Uncore
CPU

0

20

40

60

80

100

120

140

Po
w
e
r 
(W

)

Uncore CPU DRAM

LHM HT CSM SLM CHM CHMV8
0

50

100

150

200

250

300

350

E
n
e
rg
y
 (
J) DRAM

Uncore
CPU

0

20

40

60

80

100

120

140

160

Po
w
e
r 
(W
)

Uncore CPU DRAM

Traversal Insertion Removal

Fig. 2. Energy and power results for traversal, insertion and removal operations for different Map implementations. Bars mean energy consumption and
line means power consumption. LHM means LinkedHashMap, HT means Hashtable, CSM means Collections.synchronizedMap(), SLM means
ConcurrentSkipListMap, CHM means ConcurrentHashMap, and CHMV8 means ConcurrentHashMapV8.

implementations. For the LinkedHashMap, Hashtable,
and Collections.synchronizedMap() implementa-
tions, energy follows the same curve as time, for both traversal
and insertion operations, on both System#1 and System#2.
Surprisingly, however, the same cannot be said for the re-
moval operations. Removal operations on Hashtable and
Collections.synchronizedMap() exhibited energy
consumption that is proportionally smaller than their execution
time for both systems. Such behavior is due to a drop on power
consumption. Since such collections are single-lock based, for
each removal operation, the other threads need to wait until
the underling structure is rebuilt. This synchronization prevents
the collection from speed-up, and also decreases power usage.

On the other hand, for the ConcurrentSkipListMap,
ConcurrentHashMap, and ConcurrentHashMapV8
implementations, more power is being consumed behind the
scenes. That energy consumption is the product of power
consumption and time. If the benchmark receives a 1.5x speed-
up but, at the same time, yields a threefold increase in power
consumption, energy consumption will increase twofold. This
scenario is roughly what happens in traversal operations, when
transitioning from Hashtable to ConcurrentHashMap.
Even though ConcurrentHashMap produces a speedup of
1.46x over the Hashtable implementation on System#1,
it achieves that by consuming 1.51x more power. As a re-
sult, ConcurrentHashMap consumed slightly more energy
than Hashtable (2.38%). On System#2, energy con-
sumption for Hastable and ConcurrentHashMap are
roughly the same. This result is relevant mainly because
several textbooks [41], research papers [42], and internet
blog posts [43] suggest ConcurrentHashMap as the de
facto replacement for the old associative Hashtable im-
plementation. Our result suggests that the decision whether
or not to use ConcurrentHashMap should be made with

care, in particular, in scenarios where the energy consumption
is more important than performance. However, the newest
ConcurrentHashMapV8 implementation, released in the
version 1.8 of the Java programming language, handles large
maps or maps that have many keys with colliding hash codes
more gracefully. On System#1, ConcurrentHashMapV8
provides performance savings of 2.19x when compared to
ConcurrentHashMap, and energy savings of 1.99x in
traversal operations (these savings are, respectively, 1.57x and
1.61x in insertion operations, and 2.19x and 2.38x in removal
operations). In addition, for insertions and removals operations
on both systems, ConcurrentHashMapV8 has performance
similar or even better than the not thread-safe implementation.

ConcurrentHashMapV8 is a completely rewritten ver-
sion of its predecessor. The primary design goal of this
implementation is to maintain concurrent readability (typically
on the get() method, but also on Iterators) while
minimizing update contention. This map acts as a binned hash
table. Internally, it uses tree-map-like structures to maintain
bins containing more nodes than would be expected under
ideal random key distributions over ideal numbers of bins. This
tree also requires an additional locking mechanism. While list
traversal is always possible by readers even during updates,
tree traversal is not, mainly because of tree rotations that may
change the root node and its links. Insertion of the first node in
an empty bin is performed with a compare-and-set operation.
Other update operations (insertional, removal, and replace)
require locks.

Sets. Figure 3 shows the results of our experiments with Sets.
We did not present the results for CopyOnWriteHashSet
in this figure because it exhibited a much higher energy
consumption, which made the figure difficult to read.
First, for all of the implementations of Set, we can
observe that power consumption follows the same



System#1

LHS CSS SLS CHS CHSV8
0

500

1000

1500

2000

2500

E
n
e
rg
y
 (
J)

0

20

40

60

80

Po
w
e
r 
(W

)

LHS CSS SLS CHS CHSV8
0

20

40

60

80

100

120

140

160

180

E
n
e
rg
y
 (
J)

0

20

40

60

80

100

120

140

Po
w
e
r 
(W

)

LHS CSS SLS CHS CHSV8
0

20

40

60

80

100

120

140

160

180

E
n
e
rg
y
 (
J)

0

20

40

60

80

100

120

140

Po
w
e
r 
(W

)

System#2

LHS CSS SLS CHS CHSV8
0

200

400

600

800

1000

1200

1400

1600

E
n
e
rg
y
 (
J) DRAM

Uncore
CPU

0

20

40

60

80

100

120

140

Po
w
e
r 
(W

)

Uncore CPU DRAM

LHS CSS SLS CHS CHSV8
0

50

100

150

200

E
n
e
rg
y
 (
J) DRAM

Uncore
CPU

0

20

40

60

80

100

120

140

160

Po
w
e
r 
(W

)

Uncore CPU DRAM

LHS CSS SLS CHS CHSV8
0

50

100

150

200

250

E
n
e
rg
y
 (
J) DRAM

Uncore
CPU

0

20

40

60

80

100

120

140

Po
w
e
r 
(W

)

Uncore CPU DRAM

Traversal Insertion Removal

Fig. 3. Energy and power results for traversal, insertion and removal operations for different Set implementations. Bars mean energy consumption and lines
mean power consumption. LSH means LinkedHashSet, CSS means Collections.synchronizedSet(), SLS means ConcurrentSkipListSet,
CHS means ConcurrentHashSet, and CHSV8 means ConcurrentHashSetV8.

behavior on traversal operations for both System#1 and
System#2. However, for insertion and removal operations,
they are not always proportional. Notwithstanding, an
interesting trade-off can be observed when performing
traversal operations. As expected, the non-thread-safe
implementation, LinkedHashSet, achieved the least energy
consumption and execution time results, followed by the
CopyOnWriteArraySet implementation. We believe that
the same recommendation for CopyOnWriteArrayList
fits here: this collection should only be used in scenarios
where reads are much more frequent than insertions. For
all other implementations, the ConcurrentHashSetV8
presents the best results among the thread-safe ones. For
traversals, ConcurrentHashSet presented the worst
results, consuming 1.23x more energy and 1.14x more
time than Collections.synchronizedSet() on
System#1 (1.31x more energy and 1.19x more time on
System#2).

The sometimes convoluted nature of the relationship
between energy and time can be observed in
ConcurrentSkipListSet. It consumes only 1.31x less
energy than a Collections.synchronizedSet() on
removal operations on System#1, but saves 4.25x in execu-
tion time. Such energy consumption overhead is also observed
on System#2. Internally, ConcurrentSkipListSet
relies on a ConcurrentSkipListMap, which is non-
blocking, linearizable, and based on the compare-and-swap
operation. During traversal, this collection marks the “next”
pointer to keep track of triples (predecessor, node, successor)
in order to detect when and how to unlink deleted nodes.
Also, because of the asynchronous nature of these maps,
determining the current number of elements (used in the
Iterator) requires a traversal of all elements. These
behaviors produce the energy consumption overhead observed

in Figure 3.

B. Energy Behaviors with Different Number of Threads

In this group of experiments, we aim to answer RQ3. For
this experiment, we chose Map implementations only, due
to the presence of both single-lock and high-performance
implementations. We vary the number of threads (1, 2, 4,
8, 16, 32, 64, 128, and 256 concurrent threads) and study
how such variations impact energy consumption. An increment
in the number of threads also increments the total number
of elements inside the collection. Since each thread inserts
100,000 elements, when performing with one thread, the total
number of elements is also 100,000. When performing with 2
threads, the final number of elements is 200,000, and so on.
To give an impression on how Map implementations scale in
the presence of multiple threads, Figure 4 demonstrates the
effect of different thread accesses.

In this figure, each data point is normalized by the num-
ber of threads, so it represents the energy consumption per
thread, per configuration. Generally speaking, Hashtable
and Collections.synchronizedMap() scale up well.
For instance, we observed a great increase in energy consump-
tion when using Collections.synchronizedMap()
when we move from 32 to 64 threads performing traversals,
but this trend can also observed for insertions and removals.
Still on traversals, all Map implementations greatly increase
the energy consumed as we add more threads. Also, despite
the highly complex landscape, some patterns do seem to
recur. For instance, even though ConcurrentHashMapV8
provides the best scalability among the thread-safe collection
implementations, it still consumes about 11.6x more energy
than the non-thread-safe implementation. However, the most
interesting fact is the peak of ConcurrentSkipListMap,
when performing with 128 and 256 threads. As discussed



1 2 4 8 16 32 64 128 256

Number of Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
n
e
rg
y
 p
e
r 
T
h
re
a
d

LHM
HT
CSM
SLM
CHM
CHMV8

1 2 4 8 16 32 64 128 256

Number of Threads

0

1

2

3

4

5

6

7

E
n
e
rg
y
 p
e
r 
T
h
re
a
d

LHM
HT
CSM
SLM
CHM
CHMV8

1 2 4 8 16 32 64 128 256

Number of Threads

0

2

4

6

8

10

12

E
n
e
rg
y
 p
e
r 
T
h
re
a
d

LHM
HT
CSM
SLM
CHM
CHMV8

Fig. 4. Energy consumption in the presence of concurrent threads (X axis: the number of threads, Y axis: energy consumption normalized against the number
of element accesses, in joules per 100,000 elements)

earlier, during traversal, ConcurrentSkipListMap marks
or unlinks a node with null value from its predecessor (the
map uses the nullness of value fields to indicate deletion).
Such mark is a compare-and-set operation, and happens every
time it finds a null node. When this operation fails, it forces
a re-traversal from the caller.

For insertions, we observed a great disparity; while
Hashtable and Collections.synchronizedMap()
scale up well, ConcurrentSkipListMap,
ConcurrentHashMap and ConcurrentHashMapV8
scale up very well. One particular characteristic about
ConcurrentHashMapV8 is that the insertion of the
first element in an empty map employs compare-and-set
operations. Other update operations (insert, delete, and
replace) require locks. Locking support for these locks relies
on builtin “synchronized” monitors. When performing using
from 1 to 32 threads, they have energy and performance
behaviors similar to the non-thread-safe implementation. Such
behavior was previously discussed in Figure 2.

For removals, both ConcurrentHashMap and
ConcurrentHashMapV8 scale better than all other
implementations, even the non-thread-safe implementation,
LinkedHashMap. ConcurrentSkipListMap, on
the other hand, presents the worst scenario, in particular
with 16, 32 and 128 threads, even when compared to the
single-lock implementations, such as Hashtable and
Collections.synchronizedMap().

C. Collection configurations and usages

We now focus on RQ4, studying the impact of different
collection configurations and usage patterns on program en-
ergy behaviors. The Map implementations have two important
“tuning knobs”: the initial capacity and load factor. The
capacity is the total number of elements inside a Map and the
initial capacity is the capacity at the time the Map is created.
The default initial capacity of the Map implementations is
only 16 locations. We report a set of experiments where we
configured the initial capacity to be 32, 320, 3,200, 32,000,
320,000, and 3,200,000 elements — the last one is the total
number of elements that we insert in a collection. Figure 5
shows how energy consumption behaves using these different
initial capacity configurations.

As we can observe from this figure, the results can
vary greatly when using different initial capacities, in
terms of both energy consumption and execution time. The

System#1

LHM HT CSM CHMV8 CHM
0

50

100

150

200

250

300

E
n
e
rg
y
 (
J)

16
32

320
3200

32000
320000

3200000
32000000

LHM HT CSM CHMV8 CHM
0

1

2

3

4

5

Ti
m
e
 (
S
)

16
32

320
3200

32000
320000

3200000
32000000

System#2

LHM HT CSM CHMV8 CHM
0

50

100

150

200

250

E
n
e
rg
y
 (
J)

16
32

320
3200

32000
320000

3200000
32000000

LHM HT CSM CHMV8 CHM
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m
e
 (
S
)

16
32

320
3200

32000
320000

3200000
32000000

Fig. 5. Energy and performance variations with different initial capacities.

most evident cases are when performing with a high ini-
tial capacity in Hashtable and ConcurrentHashMap.
ConcurrentHashMapV8, on the other hand, presents the
least variation on energy consumption.

The other tuning knob is the load factor. It is a measure of
how full the hash table is allowed to get before its capacity
is automatically increased. When the number of elements
inside a Map exceeds the product of the load factor and the
current capacity, the hash table is rehashed; that is, its internal
structure is rebuilt. The default load factor value in most Map
implementation is 0.75. It means that, using initial capacity as
16, and the load factor as 0.75, the product of capacity is 12
(16 * 0.75 = 12). Thus, after inserting the 12th key, the new
map capacity after rehashing will be 32. If the initial capacity
is greater than the maximum number of entries divided by
the load factor, no rehash operations will ever occur. Figure 6
shows results with different load factors configurations. We
perform these experiments only with insertion operations3.

From this figure we can observe that, albeit small, the
load factor also influences both energy consumption and time.
For instance, when using a load factor of 0.25, we observed
the most energy inefficient results on System#1, except in
one case (the energy consumption of LinkedHashMap). On

3We did not performed experiments with ConcurrentSkipListMap
because it does not provide access to initial capacity and load factor variables.



System#1

LHM HT CSM CHMV8 CHM
0

10

20

30

40

50

60
E
n
e
rg
y
 (
J)

0.25 0.5 0.75 1.0

LHM HT CSM CHMV8 CHM
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m
e
 (
S
)

0.25 0.5 0.75 1.0

System#2

LHM HT CSM CHMV8 CHM
0

50

100

150

200

E
n
e
rg
y
 (
J)

0.25 0.5 0.75 1.0

LHM HT CSM CHMV8 CHM
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m
e
 (
S
)

0.25 0.5 0.75 1.0

Fig. 6. Energy and performance variations with different load factors.

System#2, the 0.25 configuration was the worst in three
out of 5 of the benchmarks. We believe they is due to the
successive rehashing operations that must occur. Generally
speaking, the default load factor (.75) offers a good tradeoff
between performance, energy, and space costs. Higher values
decrease the space overhead but increase the time cost to look
up an entry, which can reflect in most of the Map operations,
including get() and put()). It is possible to observe this
cost when using a load factor of 1.0, which means that the map
will be only rehashed when the number of current elements
reaches the current maximum size. The maximum variation
was found when performing operations on a Hastable on
System#1, in the default load factor, achieving 1.17x better
energy consumption over the 0.25 configuration, and 1.09x in
execution time.

D. The Devil is in the Details

In this section we further analyze some implementation
details that can greatly increase energy consumption.
Upper bound limit. We also observed that, on traversal and
insertion operations, when the upper bound limit needs to be
computed in each iteration, for instance:

for(int i=0; i < list.size(); i++) { ... }

the Vector implementation consumed about twice as much
as it consumed when this limit is computed only once on
(1.98x more energy and 1.96x more time), when using

int size = list.size();
for(int i=0; i < size; i++) { ... }

When this limit is computed beforehand, energy consump-
tion and time drop by half. Such behavior is observed on
both System#1 and System#2. We believe it happens
mainly because for each loop iteration, the current thread
needs call list.size() and fetch the stored variable from
the memory, which would incur in some cache misses. When

initializing a size variable close to the loop statement, we
believe that such variable will be stored in a near memory loca-
tion, and thus, can be fetched together with the remaining data.
Using this finding, well-known IDEs can implement refac-
toring suggestions for developers. Also, recent studies have
shown that programmers are likely to follow IDE tips [44].
One concern, however, is related to removal operations. Since
removal on Lists shift any subsequent elements to the left,
if the limit is computed beforehand, the i++ operation will
skip one element.
Enhanced for loop. We also analyzed traversal operations
when the programmer iterates using an enhanced for loop, for
instance, when using

for (String e: list) { ... }

which is translated to an Iterator at compile time.
In this configuration, Vector needs to synchronize in two
different moments: during the creation of the Iterator
object, and in every call of the next() method. By contrast,
the Collections.synchronizedList() does not syn-
chronize on the Iterator, and thus has similar perfor-
mance and energy usage when compared to our baseline,
ArrayList. On System#1, energy decreased from 37.07J
to 2.65J, whereas time decreased from 0.81 to 0.10. According
to the Collections.synchronizedList() documen-
tation, the programmer must ensure external synchronization
when using Iterator.
Removal on objects. When using Lists, instead of per-
forming removals based on the indexes, one can perform
removals based on object instances. We observed an increment
on energy consumption of 39.21% on System#1 (32.28%
on execution time). This additional overhead is due to the
traversal needed for these operations. Since the collection does
not know in which position the given object is placed, it needs
to traverse and compare each element until it finds the object
– or until the collection ends.

V. CASE STUDY

In this section we apply our findings in two real-world
applications. We select applications that make intensive use
of Hashtables. We chose the Hashtable implementation
because it presents one of the greatest differences in terms
of energy consumption, when compared to its intended re-
placement class, ConcurrentHashMap (Figure 2). The first
selected application is XALAN, from the well-known DaCapo
suite [45]. This application transforms XML documents into
HTML. It performs reads and writes from input/output chan-
nels, and it has 170,572 lines of Java code. We chose this
application because it employs more than 300 Hashtables.

Since the DaCapo framework is not under active develop-
ment, we used the BOA infrastructure [46] to select active,
i.e., have at least one commit in the last 12 months, non-
trivial, i.e., have at least 500 commits in the whole software
history, applications that use at least 50 Hashtables. We
found 151 projects that fit on this criteria. Among the projects,



Hashtable CHM CHMV8
0

20

40

60

80

100

E
n
e
rg
y
 (
J) DRAM

Uncore
CPU

0

10

20

30

40

50

60

70

80

Po
w
e
r 
(W

)

Uncore CPU DRAM
Hashtable CHM CHMV8

0

100

200

300

400

500

600

700

E
n
e
rg
y
 (
J) DRAM

Uncore
CPU

0

5

10

15

20

25

30

35

40

Po
w
e
r 
(W

)

Uncore CPU DRAM

XALAN TOMCAT

Fig. 7. XALAN and TOMCAT results.

we selected TOMCAT, which is an open-source Web server.
The latest version, 8.5, has 188,645 lines of Java code, and
149 uses of Hashtables. Also, one of its previous versions
(6.0) is also part of the DaCapo framework.

For each application, we performed our exper-
iments by changing the Hashtable instance to
ConcurrentHashMap and ConcurrentHashMapV8.
The rest of the source code remained unchanged. We ran
the applications on System#1, with 32 concurrent threads.
Figure 7 shows the results.

The results here confirm some patterns from micro-
benchmarking. Both XALAN and TOMCAT present an im-
provement in energy consumption when migrating from
Hashtable to ConcurrentHashMap. XALAN, in partic-
ular, presented an improvement of 12.21% when varying from
Hashtable to ConcurrentHashMap, and 17.82% when
varying from Hashtable to ConcurrentHashMapV8.
This is particularly due to its CPU intensive nature, which
is also observed with the green line. TOMCAT, on the
other hand, spends most of its computational time with
logging and network operations — which are intrinsically
IO operations. Nonetheless, it was still possible to obtain a
9.32% energy savings when moving from Hashtable to
ConcurrentHashMapV8.

These results suggests that even small changes have the
potential of improving the energy consumption of a non-trivial
software system. It is important to observe that the degree of
energy saving is related to the degree of use of an inefficient
collection (e.g., Hashtable). Therefore, applications that
make heavy use of single-lock based collections are more
likely to have high energy gains.

Finally, although ConcurrentHashMap and
Hashtable implement the Map interface, the refactoring
process is not always straightforward. We found at least three
complicating scenarios. We did not refactor any of them.

1) Hashtable and ConcurrentHashMap do not obey
the same hierarchy. For instance, Hashtable inher-
its from Dictionary and implements Cloenable,
while ConcurrentHashMap does not. It means that
operations such as hash.clone() raises a compile
error when changing the instance of the hash variable.

2) Third party libraries often require implementations
instead of interfaces. If a method is expecting
a Hashtable instead of, say, a Map, a
ConcurrentHashMap needs to be converted to
Hashtable, decreasing its effectiveness.

3) Programmers often use methods that are present only
in the concrete implementation, not in the inter-
face (e.g., rehash). This creates a strong tie be-
tween the client code with the concrete implementa-
tion, hampering the transition from Hashtable to
ConcurrentHashMap.

VI. THREATS TO VALIDITY

Internal factors. First, we did not use the same energy
measurement in both systems. This happens because jRAPL
only works with Intel processors, and System#1uses an
AMD one. We mitigate this threat by replicating the same
experiments in both systems, while using the same method-
ology. Second, the elements which we used are not randomly
generated. We chose to not use random number generators
because they can greatly impact the performance and energy
consumption of our benchmarks – we observed standard
deviation of over 70% between two executions. We mitigate
this problem by combining the index of the for loop plus the
thread id that inserted the element. This approach also prevents
compiler optimizations that may happen when using only the
index of the for loop as the element to be inserted.
External factors. First, our results are limited by our selection
of benchmarks. Nonetheless, our corpus spans a wide spectrum
of collections, ranging from lists, sets, and maps. Second, there
are other possible collections implementations and operations
beyond the scope of this paper. Third, our results are reported
with the assumption that JIT is enabled. This stems from our
observation that later runs of JIT-enabled executions do sta-
bilize in terms of energy consumption and performance [15].
We experienced differences in standard deviation of over 30%
when comparing the warmup run (first 3 executions) and later
runs, but less than 5% when comparing the last 3 runs.

VII. CONCLUSIONS

We presented an empirical study that investigates the im-
pacts of using different collections on energy usage. Differ-
ently than related work, we focus on Java thread-safe imple-
mentations. Our results are meaningful and impactful in the
sense that: (1) Different operations of the same implementation
also have different energy footprints. For example, a removal
operation in a ConcurrentSkipListMap can consume
more than 4 times of energy than an insertion to the same
collection. Also, for CopyOnWriteArraySet, an insertion
consumes three order of magnitude more than a read. (2)
Small changes have the potential of improving the energy
consumption by 2x, in our micro-benchmarks, and by 10%, in
our real-world benchmarks.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their useful com-
ments. Gustavo is supported by PROPPG/IFPA. Fernando
is supported by CNPq/Brazil (304755/2014-1, 477139/2013-
2), FACEPE/Brazil (APQ-0839-1.03/14) and INES (CNPq
573964/2008-4, FACEPE APQ-1037-1.03/08, and FACEPE
APQ-0388-1.03/14). David is supported by US NSF CCF-
1526205 and CCF-1054515.



REFERENCES

[1] C. Wilke, S. Richly, S. Gotz, C. Piechnick, and U. Assmann, “Energy
consumption and efficiency in mobile applications: A user feedback
study,” in Green Computing and Communications (GreenCom), 2013
IEEE and Internet of Things (iThings/CPSCom), IEEE International
Conference on and IEEE Cyber, Physical and Social Computing, Aug
2013, pp. 134–141.

[2] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan, “Calculating source
line level energy information for android applications,” in Proceedings
of the 2013 International Symposium on Software Testing and Analysis,
ser. ISSTA 2013, 2013, pp. 78–89.

[3] C. Seo, S. Malek, and N. Medvidovic, “Component-level energy con-
sumption estimation for distributed java-based software systems,” in
Component-Based Software Engineering, ser. Lecture Notes in Com-
puter Science, M. Chaudron, C. Szyperski, and R. Reussner, Eds.
Springer Berlin Heidelberg, 2008, vol. 5282, pp. 97–113.

[4] K. Liu, G. Pinto, and D. Liu, “Data-oriented characterization of
application-level energy optimization,” in Proceedings of the 18th In-
ternational Conference on Fundamental Approaches to Software Engi-
neering, ser. FASE’15, 2015.

[5] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power cmos digital
design,” Solid-State Circuits, IEEE Journal of, vol. 27, no. 4, pp. 473–
484, Apr 1992.

[6] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanaa, and C. Le, “RAPL:
memory power estimation and capping,” in Proceedings of the 2010
International Symposium on Low Power Electronics and Design, 2010,
Austin, Texas, USA, August 18-20, 2010, 2010, pp. 189–194.

[7] H. Ribic and Y. D. Liu, “Energy-efficient work-stealing language run-
times,” in Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ser. ASPLOS ’14, 2014, pp. 513–528.

[8] T. W. Bartenstein and Y. D. Liu, “Rate types for stream programs,” in
Proceedings of the 2014 ACM International Conference on Object Ori-
ented Programming Systems Languages and Applications, ser. OOPSLA
’14, 2014, pp. 213–232.

[9] M. Cohen, H. S. Zhu, E. E. Senem, and Y. D. Liu, “Energy types,” in
OOPSLA’12, 2012, pp. 831–850.

[10] Y.-W. Kwon and E. Tilevich, “Reducing the energy consumption of
mobile applications behind the scenes,” in ICSM, 2013, pp. 170–179.

[11] C. Sahin, L. Pollock, and J. Clause, “How do code refactorings affect
energy usage?” in Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ser.
ESEM ’14, 2014, pp. 36:1–36:10.

[12] D. Li and W. Halfond, “An investigation into energy-saving program-
ming practices for android smartphone app development,” in GREENS,
2014.

[13] L. G. Lima, G. Melfe, F. Soares-Neto, P. Lieuthier, J. ao Paulo Fer-
nandes, and F. Castor, “Haskell in Green Land: Analyzing the Energy
Behavior of a Purely Functional Language,” in Proc. 23rd IEEE Inter-
national Conference of Software Analysis, Evolution, and Reengineering
(SANER’2016), March 2016.

[14] W. O. Jr., W. Torres, and F. Castor, “Native or Web? A Preliminary Study
on the Energy Consumption of Android Development Models,” in Proc.
23rd IEEE International Conference of Software Analysis, Evolution,
and Reengineering (SANER’2016), March 2016.

[15] G. Pinto, F. Castor, and Y. D. Liu, “Understanding energy behaviors
of thread management constructs,” in Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems
Languages and Applications, ser. OOPSLA ’14, 2014, pp. 345–360.

[16] G. Xu, “Coco: Sound and adaptive replacement of java collections,”
in Proceedings of the 27th European Conference on Object-Oriented
Programming, ser. ECOOP’13, 2013, pp. 1–26.

[17] Y. Bu, V. Borkar, G. Xu, and M. J. Carey, “A bloat-aware design for big
data applications,” in Proceedings of the 2013 International Symposium
on Memory Management, ser. ISMM ’13, 2013, pp. 119–130.

[18] J. Li and J. F. Martı́nez, “Power-performance considerations of parallel
computing on chip multiprocessors,” ACM Trans. Archit. Code Optim.,
vol. 2, no. 4, pp. 397–422, Dec. 2005.

[19] Y. Lin, C. Radoi, and D. Dig, “Retrofitting concurrency for android
applications through refactoring,” in Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, ser. FSE 2014, 2014, pp. 341–352.

[20] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle,
“Energy profiles of java collections classes,” in Proceedings of the 38th
International Conference on Software Engineering, ser. ICSE ’16, 2016.

[21] L. G. Lima, F. Soares-Neto, P. Lieuthier, F. Castor, G. Melfe, and J. P.
Fernandes, “Haskell in green land: Analyzing the energy behavior of a
purely functional language,” in IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering, SANER 2016, Suita,
Osaka, Japan, March 14-18, 2016, 2016, pp. 517–528.

[22] C. Sahin, F. Cayci, I. Gutierrez, J. Clause, F. Kiamilev, L. Pollock, and
K. Winbladh, “Initial explorations on design pattern energy usage,” in
GREENS, June 2012, pp. 55–61.

[23] Y.-W. Kwon and E. Tilevich, “Cloud refactoring: automated transitioning
to cloud-based services,” Autom. Softw. Eng., vol. 21, no. 3, pp. 345–372,
2014.

[24] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang, “Refac-
toring android java code for on-demand computation offloading,” in
Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, ser. OOPSLA ’12,
2012, pp. 233–248.

[25] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley, “The yin and
yang of power and performance for asymmetric hardware and managed
software,” in Proceedings of the 39th Annual International Symposium
on Computer Architecture, ser. ISCA ’12, 2012, pp. 225–236.

[26] G. Scanniello, U. Erra, G. Caggianese, and C. Gravino, “On the effect of
exploiting gpus for a more eco-sustainable lease of life,” International
Journal of Software Engineering and Knowledge Engineering, vol. 25,
no. 1, p. 169, 2015.

[27] C. Sahin, P. Tornquist, R. McKenna, Z. Pearson, and J. Clause., “How
does code obfuscations impact energy usage?” in ICSME, 2014.

[28] N. Vallina-Rodriguez and J. Crowcroft, “Energy management techniques
in modern mobile handsets,” Communications Surveys Tutorials, IEEE,
vol. 15, no. 1, pp. 179–198, First 2013.

[29] G. Pinto, W. Torres, B. Fernandes, F. Castor, and R. S. Barros, “A large-
scale study on the usage of javas concurrent programming constructs,”
Journal of Systems and Software, no. 0, pp. –, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121215000849

[30] Y. Lin and D. Dig, “Check-then-act misuse of java concurrent collec-
tions,” in Proceedings of the 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation, ser. ICST ’13, 2013,
pp. 164–173.

[31] G. Pinto and F. Castor, “Characterizing the energy efficiency of java’s
thread-safe collections in a multicore environment,” in Proceedings
of the SPLASH’2014 workshop on Software Engineering for Parallel
Systems (SEPS), ser. SEPS ’14, 2014.

[32] I. Manotas, L. Pollock, and J. Clause, “Seeds: A software engineer’s
energy-optimization decision support framework,” in ICSE, 2014.

[33] R. Pereira, M. Couto, J. a. Saraiva, J. Cunha, and J. a. P. Fernandes,
“The influence of the java collection framework on overall energy
consumption,” in Proceedings of the 5th International Workshop on
Green and Sustainable Software, ser. GREENS ’16, 2016, pp. 15–21.

[34] M. Blog, “A beautiful race condition,” http://mailinator.blogspot.com.br/
2009/06/beautiful-race-condition.html, accessed: 2016-09-13.

[35] M. Kambadur and M. A. Kim, “An experimental survey of energy man-
agement across the stack,” in Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA,
October 20-24, 2014, 2014, pp. 329–344.

[36] B. Subramaniam and W.-c. Feng, “Towards energy-proportional com-
puting for enterprise-class server workloads,” in Proceedings of the 4th
ACM/SPEC International Conference on Performance Engineering, ser.
ICPE ’13, 2013, pp. 15–26.

[37] M. Hähnel, B. Döbel, M. Völp, and H. Härtig, “Measuring energy
consumption for short code paths using rapl,” SIGMETRICS Perform.
Eval. Rev., vol. 40, no. 3, pp. 13–17, Jan. 2012.

[38] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design
techniques for system-level dynamic power management,” IEEE Trans.
Very Large Scale Integr. Syst., vol. 8, no. 3, pp. 299–316, Jun. 2000.

[39] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” in Proceedings of the
11th Annual International Symposium on Computer Architecture, ser.
ISCA ’84, 1984, pp. 348–354.

[40] M. De Wael, S. Marr, and T. Van Cutsem, “Fork/join parallelism in the
wild: Documenting patterns and anti-patterns in java programs using
the fork/join framework,” in Proceedings of the 2014 International

http://www.sciencedirect.com/science/article/pii/S0164121215000849
http://mailinator.blogspot.com.br/2009/06/beautiful-race-condition.html
http://mailinator.blogspot.com.br/2009/06/beautiful-race-condition.html


Conference on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools, ser. PPPJ ’14, 2014,
pp. 39–50.

[41] T. Peierls, B. Goetz, J. Bloch, J. Bowbeer, D. Lea, and D. Holmes, Java
Concurrency in Practice. Addison-Wesley Professional, 2005.

[42] D. Dig, J. Marrero, and M. D. Ernst, “Refactoring sequential java code
for concurrency via concurrent libraries,” in Proceedings of the 31st
International Conference on Software Engineering, ser. ICSE ’09, 2009,
pp. 397–407.

[43] B. Goetz, “Java theory and practice: Concurrent collections classes,”
http://www.ibm.com/developerworks/java/library/j-jtp07233/index.html,
accessed: 2014-09-29.

[44] E. Murphy-Hill, R. Jiresal, and G. C. Murphy, “Improving software
developers’ fluency by recommending development environment com-
mands,” in Proceedings of the ACM SIGSOFT 20th International Sym-
posium on the Foundations of Software Engineering, ser. FSE ’12, 2012,

pp. 42:1–42:11.

[45] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. L. Hosking, M. Jump, H. B. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von Dincklage,
and B. Wiedermann, “The dacapo benchmarks: java benchmarking
development and analysis,” in Proceedings of the 21th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2006, October 22-26, 2006,
Portland, Oregon, USA, 2006, pp. 169–190. [Online]. Available:
http://doi.acm.org/10.1145/1167473.1167488

[46] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in 35th International Conference on Software Engineering, ser. ICSE’13,

May 2013, pp. 422–431.

http://www.ibm.com/developerworks/java/library/j-jtp07233/index.html
http://doi.acm.org/10.1145/1167473.1167488

	Introduction
	Related Work
	Study Setup
	Benchmarks
	Experimental Environment

	Study Results
	Different Collection Implementations and Operations
	Energy Behaviors with Different Number of Threads
	Collection configurations and usages
	The Devil is in the Details

	Case Study
	Threats to Validity
	Conclusions
	References

