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Abstract—The use of automatic static analysis tools (ASATs)
has gained increasing attention in the last few years. Even though
available research have already explored ASATs issues and how
they are fixed, these studies rely on revisions of the software,
instead of mining real usage of these tools and real issue reports.
In this paper we contribute with a comprehensive, multi-method
study about the usage of SonarQube (a popular static analysis
tool), mining 421,976 issues from 246 projects in four different
instance of SonarQube: two hosted in open-source communities
(Eclipse and Apache) and two hosted in Brazilian government
institutions (Brazilian Court of Account (TCU) and Brazilian
Federal Police (PF)). We first surveyed team leaders of the
analyzed projects and found that they mostly consider ASATs
warning messages as relevant for overall software improvement.
Second, we found that both Eclipse and TCU employ highly
customized instance of SonarQube, with more than one thousand
distinct checkers–though just a subset of these checkers actually
led to issues’ reports. Surprisingly, we found a low resolution
rate per project in all organizations–on average, 13% of the
issues have been solved in the systems. We conjecture that just a
subset of the checkers reveal real design and coding flaws, and
this might artificially increase the technical debt of the systems.
Nevertheless, considering all systems, there is a central tendency
(median) of fixing issues after 18.99 days they had been reported,
faster than the period for fixing bugs as reported in previous
studies.

I. INTRODUCTION

The rapid growth of software development activities over

the past decade has increased the focus on the reliability and

quality of software systems, which also incurs in associated

costs to ensure these characteristics [1]. The use of Automatic

Static Analysis Tools (ASATs) is a prominent approach to im-

prove internal quality attributes, as they reveal recurrent code

violations without having the cost of running the program [2].

By mainly leveraging heuristic pattern matching approaches

to scan source/binary code, these tools can be used for a

variety of purposes [3], [4], [5], such as automatically identify

refactoring opportunities [6], detect security vulnerabilities [7],

highlight performance bottlenecks [8], and bad programming

practices, such as code smells [9].

One organization can leverage the benefits of using static

analysis tools when they are integrated in the development

pipeline—for instance, through the adoption of Continuous

Integration (CI) practices [4], [5], [10]. An important principle

of CI is continuous inspection, which includes static analysis

of source code, among other types of assessments, on every

change of the software [10]. Even though the use of ASATs

provide several benefits, developers still face challenges when

using them [2], [3]. One common reason is the high number

of false positive violations, which can reach the thousands

as reported by Johnson et al. [2]. Another related barrier is

filtering through warnings to find defects that are worth fixing,

as violations are often ignored [3].

Previous works have already investigated how open-source

software (OSS) projects take advantage of ASATs (e.g., [11],

[12], [13]). For instance, Beller et al. [11] found that ASAT

tools are widely used, with most projects relying on a single

ASAT tool. Recent studies [12], [13] have focused on what

kind of violations developers tend to fix. We challenge this

perspective as researchers had to run the static analysis tools

themselves on multiple revisions of the projects. As stated by

Liu et al. [13], many developers do not use ASATs as part of

their development tool chain. Consequently, a piece of code

flagged as a fixed issue by these studies may never have been

perceived as a violation, and thus fixed unintentionally. We

argue that this fact has a significant impact on how developers

react to violations. Furthermore, the studies restricted their

analysis to OSS projects.

In this work we present the results of an in-depth, multi-

method study that aims to increase the comprehension of

how developers respond to violations reported by ASATs. To

achieve this goal, we first conduct a survey with practitioners,

in order to better understand the relevance of using static

analysis tools and the general procedures developers take

to deal with the reported issues. We found that developers

consider the use of static analysis tools relevant for improving

software quality. Developers also use the outcomes of these

tools to decide about postponing a release or accepting /

rejecting source code contributions. We then curate and mine

a dataset of issues reported from both OSS and industrial

projects that actually use the SonarQube ASAT, the leading

product for continuous code inspection, used by more than

85,000 organizations.

Our study comprehends 373,413 non-fixed violations and

36,974 fixed violations spanning from 246 Java projects dis-

tributed in four distinct SonarQube instances, two from Eclipse

(EF) and Apache foundations (ASF)—both well-known Java

ecosystems [12], [14]—and two from Brazilian government

institutions, the Brazilian Federal Court of Accounts (TCU)



and the Brazilian Federal Police (PF). Altogether, in this

work we answer questions related to (a) the perceptions of

the reported issues and (b) the practices for fixing them.

Accordingly, we present the following contributions:

• We present how experienced practitioners use the reports

of a static analysis tool.

• We report the results of an in depth analysis of issues

and fixes from four different instances of SonarQube.

• We implement and make available an approach for mining

issues from SonarQube.

• We make available an extensive dataset1 of issues from

open-source Java projects.

II. BACKGROUND

Static analysis tools analyze source code without having to

run the program [15]. They aim to capture defects in source

code in an anticipated manner, helping ensure higher quality

software during its development process [2]. ASATs can iden-

tify important classes of defects that are frequently not found

by neither unit tests nor manual inspection [16]. Moreover,

ASATs can be integrated to the development pipeline by a

variety of ways, such as on demand, just in time before the

source code is stored in a source management system, or con-

tinuously during software development activities [2]. The latter

can be achieved through the adoption of continuous integration

(CI) practices, specifically by continuous inspection, which

includes static analysis of source code [10].

Several tools integrate static analysis into development

workflows, including SonarQube. SonarQube [17] is one of

the most adopted code analysis tool in the context of CI

environments [10], [4]. It supports more than 25 languages

and is used by more than 85,000 organizations. SonarQube

includes its own rules and configurations, but new rules can be

added. Notably, it incorporates popular rules of other static and

dynamic code analysis tools, such as FindBugs and PMD [10].

SonarQube considers rules as coding standards. When a

piece of code violates a rule, an issue is raised. SonarQube

classifies issues by type and severity. Issues’ types are related

to the code itself [12]. There are three broad kinds of issues

on SonarQube. A Bug occurs when an issue is related to a

piece of code that is demonstrably wrong. A Vulnerability

occurs when a piece of code could be exploited to cause harm

to the system. Finally, a Code smell occurs when an issue

represent instances of improper code, which are neither a bug

nor a vulnerability.

The severities of issues can also be categorized by their

possible impact, either on the system or on the developer’s pro-

ductivity. Blocker and critical issues might impact negatively

the system, with blocker issues having a higher probability

compared to critical ones. SonarQube recommended to fix

these kind of issues as soon as possible2. Major issues can

highly impact the productivity of a developer, while minor

ones have little impact. Finally, info issues represent all issues

1https://doi.org/10.5281/zenodo.2602038
2https://docs.sonarqube.org/latest/user-guide/issues/

that are neither a bug nor a quality flaw. In SonarQube,

issues flow through a lifecycle, taking one of multiple possible

statuses, namely: open, which is set by SonarQube on new

issues; resolved, set manually to indicate that an issue should

be closed; closed, which is set automatically by SonarQube

when an issue is fixed.

III. STUDY SETTINGS

In this section we describe the settings of our study. We first

state the goal of our investigation, and then we present details

about the research questions we address and the procedures

we take to conduct the study and collect issues from the

SonarQube instances.

A. Research Goal

The main goal of this research is to build a broad compre-

hension about how developers use the static analysis Sonar-

Qube tool, as well as to characterize how they respond to the

warnings reported by these tools. Differently from previous

works [12], [13], here we focus on both open-source and

private organizations.

B. Research Questions

We conduct a multi-method study to investigate the follow-

ing research questions:

(RQ1) What are the practitioners’ perceptions about the use

of static analysis tools?

(RQ2) How often developers fix issues found in open-source

and private SonarQube instances?

(RQ3) What are the SonarQube issues that developers fix

more frequently?

(RQ4) How is the distribution of the SonarQube issues? That

is, do 20% of the issues correspond to 80% of the

fixes? Do 20% of the files lead to 80% of the issues?

To answer RQ1 we use a survey approach. We explore

whether the use of ASATs is relevant to improve software

quality, considering the perspective of practitioners. We also

use the answers to RQ1 to support the discussion about the

results of the second study.

To answer the remaining questions we use a mining software

repository approach. The goal in this case is to comprehend

the dynamics for fixing issues reported by SonarQube. The

last research question might help practitioners to configure

static analysis tools properly, and thus avoid a huge number

of false-positives. Moreover, it might also help developers plan

their activities in a more effective way, reducing the efforts to

improve the internal quality of the systems.

We consider different perspectives to answer these ques-

tions, including the characteristics of the systems (e.g., legacy

or greenfield systems, private or open-source systems) and the

type and severity of the issues. The datasets we use in the

investigation include issues from four SonarQube instances,

two publicly available, and two private ones.

https://doi.org/10.5281/zenodo.2602038
https://docs.sonarqube.org/latest/user-guide/issues/


TABLE I
SURVEY QUESTIONS ANSWERED BY ALL 18 PARTICIPANTS

ID Question

Q1 Do you agree that warning messages reported by ASATs are relevant for improving the design and implementation of software?

Q2 How do you fix the issues reported by Automatic Static Analysis Tools?

Q3 How often do you use program transformation tools to automatically fix issues reported by Automatic Static Analysis Tools?

Q4 How important is the use of program transformation tools to fix issues reported by ASATs?

Q5 How often do you reject pull-requests based on the issues reported by ASATs?

Q6 How often do you postpone a release based on the issues reported by ASATs?

C. Research Methods

To answer the first research question, we conduct an online

survey with developers from the four organizations in which

we focus our study. We asked 6 closed questions (see Table I)

mainly using a Likert scale [18]. For the OSS foundations we

asked for participation on mailing lists, while for the private

organizations we reached our personal contacts. The survey

was available for approximately one month. Participation was

voluntary and all the participants allowed the researcher to use

and disclose the information provided while conducting the

research. The estimated time to complete the survey was 12-

15 minutes. 18 developers, from 81 unique visits (completion

rate of 23%), answered all questions of our questionnaire.

The majority of the participants identified themselves, al-

though it was not mandatory. Among the respondents, 50%

have more than ten years of experience in software develop-

ment, 27.77% have between four and ten years, and 22.23%

have under four years. Regarding the time using ASATs,

33.33% have more than four years, and the remaining 66.67%

have under than four years.

To investigate the practices for fixing issues (RQ2) – (RQ4),

we mine four different SonarQube repositories. We focus on

projects from Eclipse Foundation (EF) and Apache Software

Foundation (ASF). This decision is based on the work of

Izquierdo and Cabot [14], which analyzes 89 software foun-

dations in OSS development and both EF and ASF were the

largest in terms of projects they support (216 for EF and 312

for ASF). Moreover, their projects are known for high quality

and wide adoption in the OSS community [12].

Our private datasets from Brazilian government institutions

are selected not only due to convenience (we got permission

to mine their issue databases), but also because they represent

a heterogeneous context. TCU does inhouse development

whereas PF mostly outsources. More important to this work,

they both enforce conformity to SonarQube quality checks in

their development processes. We restricted our analysis to the

Java programming language, since it is the programming lan-

guage used in the majority of projects available in the selected

OSS foundations [19] and is also the primary programming

language used in the private datasets. In addition, SonarQube

has a very mature analysis for Java projects, with more than

525 rules.

We leverage statistical techniques during the analysis of this

study, including exploratory data analysis (considering plots

and descriptive statistics) and hypothesis testing methods. In

particular, we use the non-parametric Kruskal-Wallis hypoth-

esis testing [20] to understand whether or not the severity of

a given issue influences the interval in days of the fix. We

also use the Dunn test [21] to conduct a multiple comparison

of the means. We chose non-parametric methods because our

data does not follow a normal distribution. As such, we used

the Spearman’s rank correlation test [22] to investigate the

correlation between variables.

D. SonarQube Data Collection

We implement a tool3 that is able to extract several data

from SonarQube instances. The data collection is done by

querying the API provided in the instance itself. One challenge

hidden in this activity is to deal with distinct versions of

SonarQube, as parameters and responses differ from versions

with large disparities. We found that OSS projects rely on

older versions of SonarQube: EF uses 4.5.7 (major version

from September, 2014) and ASF uses 5.6.3 (major version

from June, 2016). Interestingly, those are Long Term Support

(LTS) versions. The private instances rely on newer versions

(the 7.x, released after 2018). None of them is a LTS version

though, although they can be queried in the same fashion. The

data collection took place during the months of November /

December of 2018, though we updated the datasets also in

January 2019.

For each SonarQube instance, we gather data for rules,

projects, and their issues. As aforementioned, rules indicate

whether instances use customized rules or not. Even though

SonarQube encompasses rules from other ASATs, such as

FindBugs and CheckStyle, we found that EF and TCU use a

significant number of customized rules from these ASATs. We

filter out 28 projects to remove branches that are considered

as projects in SonarQube, a situation particular in the TCU’s

repository. The next step collects issues: open, fixed, won’t fix,

and false-positives. To filter out non-desired projects, such as

toy projects, inactive and demos [23], we apply a filter to

consider only projects with at least one Java fixed issue. We

removed 31 projects from EF, 21 from ASF, 62 from PF and

157 from TCU when applying this filter. Table II presents an

overview of the whole dataset.

Overall we collected data from 246 Java software projects.

Altogether, these software projects employed 4,319 rules

(2,086 distinct ones). Still, these projects had reported a total

3https://github.com/dvmarcilio/sonar-issues-miner

https://www.eclipse.org/org/
https://www.apache.org/foundation/
https://www.apache.org/foundation/
https://www.sonarsource.com/products/codeanalyzers/sonarjava.html
https://www.sonarqube.org/downloads/
https://github.com/dvmarcilio/sonar-issues-miner


TABLE II
OVERVIEW OF THE COLLECTED DATA. THE LAST COLUMN INDICATES

QUANTITY OF (W)ON’T (F)IX AND (F)ALSE-(P)OSITIVE ISSUES.

Org. Rules Projects
Filtered

Projects

Open

Issues

Fixed

Issues
WF + FP

EF 1,493 95 64 29,547 6,993 952

ASF 397 48 27 136,235 16,731 10,168

TCU 1,998 283 98 165,304 10,021 467

PF 530 119 57 42,327 3,229 2

Total 2,086a 545 246 373,413 36,974 11,589

a Distinct rules

of 421,976 issues (373,413 labeled as open, 36,974 as fixed,

and 11,589 as won’t fix or false positive).

IV. STUDY RESULTS

In this section we present the main findings of our research,

answering the general research questions we investigate.

A. What are the practitioners’ perceptions about the use of

static analysis tools? (RQ1)

The findings from our survey indicate that: (a) developers

consider ASATs warnings as relevant for overall software

improvement (Q1), and (b) developers typically fix the issues

along the implementation of bug fixes and new features (Q2),

i.e., without creating specific tasks / branches for fixing the

reported issues. Perhaps due to the small effort to fix part of the

issues, this task does not become a first class planned activity,

and thus may not require their own development branches.

More than 80% of the respondents said that they agree

or strongly agree that the issues reported by ASAT tools

are relevant for improving the design and implementation of

software (Q1), as shown in Figure 1. Moreover, as Figure 2

shows, only 22.22% reject pull-requests based on the issues

reported (Q5), and 50% never or rarely postpone a release

based on the issues reported (Q6).

We find an apparent contradiction between the importance

that developers claim ASATs and program transformation tools

to automatically fix issues have (Q4), and how these tools are

used by them during the software development process (Q3),

we detail it in the next two paragraphs. Regarding the use

of transformation tools to automatically fix issues reported by

ASATs, more than 60% said that they consider them important

or very important (see Figure 3). But, when asked about how

often they actually use this type of tool for this purpose, only

22.22% answered very often, against 66.66% never or rarely,

as shown in Figure 2. This might indicate that issues are not

always solved in batch, which would benefit from the use

of automatic program transformation tools. This also suggests

that it would be worth to develop program transformation tools

that address issues reported by static analysis tools and that

could be integrated into continuous integration workflows.

TABLE III
DESCRIPTIVE STATISTICS RELATED TO THE NUMBER OF DAYS FOR FIXING

ISSUES

Organization Median Mean Sd

EF 24.59 299.11 435.19

ASF 6.67 222.16 298.73

TCU 47.14 282.60 435.43

PF 153.81 216.60 241.31

B. How often developers fix issues found by SonarQube?

(RQ2)

To answer this research question we first investigate the

interval in days between the date a given issue was created

and the date it was closed. Here we only consider the 36,974

fixed issues (8.76% of all issues). The issues that developers

quickly fix might represent relevant problems that should be

fixed in a short period of time or could be a potential target

for automation.

Figure 4 presents some descriptive statistics, considering

the four organizations. Considering all projects, the median

interval in days for fixing an issue is 18.99 days. There

is a (median) central tendency of ASF developers to fix

issues in 6.67 days (more details in Table III). Interestingly,

the industrial projects studied take much longer to fix the

SonarQube reported issues, when compared to the OSS studied

projects. In a previous work, Panjer and colleagues reported

that Eclipse bugs are fixed in 66.2 days on average [24]. Here

we found that developers spend on average more time to fix

issues reported by SonarQube (see Table III). In addition, we

found 10,749 issues (29% of them) that were fixed after one

year of the report—many of them are considered major issues

(see Figure 7). These “long to be fixed” issues were found

across all four organizations (ASF: 4,760, EF: 2,310, TCU:

2,954, PF: 726). It is also important to note that almost 50%

of the open issues have been reported more than one year ago.

Altogether, our first conclusion is that the number of fixes

is relatively small (8.77% of the total of issues), a lower

value than reported by previous research. Developers

often fix the issues in a reasonable time frame (median

is 18.99 days), also a shorter period than previously

reported periods for both bugs and ASATs violations.

In addition, we found that almost one-third of the fixes

occurs after one year the issue had been reported.

We used the approach proposed by Giger et al. [25] for

classifying the resolutions time. It has only two status: Fast

(fix interval ≤ median time to fix) and Slow (fix interval >
median time to fix). Since the median interval for fixing an

issue is 18.99 days, we used this information to characterize

our dataset of fixed issues in the plot of Figure 5. As one

could see, most fixes (55%) related to ASF projects present a

Fast resolution while the PF organization presents the slowest

scenario, with 66% of its resolutions being considered Slow.
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Fig. 1. Do you agree that warning messages reported by ASAT tools are relevant for improving the design and implementation of software? (Q1)
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Fig. 2. Survey responses on whether respondents postpone a release (Q6),
reject pull-requests (Q5), or use transformation tools (Q3).
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Fig. 3. How important is the use of program transformation tools to fix issues
reported by ASATs? (Q4)

To better understand why the reported issues are taking too

long to be fixed at PF, we present a closer look at PF issues

resolutions in Table IV.

In our collaboration with PF, we found out that they

work on two lines of software projects: one that maintains
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Fig. 4. Descriptive statistics with the interval in days to fix reported issues
(grouped by organization)
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Fig. 5. Speed resolutions of the organizations

TABLE IV
SPEED RESOLUTIONS FOR PF’S DIFFERENT LINES OF SOFTWARE

DEVELOPMENT PROJECTS

Projects category Fix Class Total

Greenfielda Fast Resolutions 794 (24,6%)

Greenfield Slow Resolutions 1068 (33,1%)

Legacyb Fast Resolutions 305 (9,4%)

Legacy Slow Resolutions 1062 (32,9%)

a 26 projects
b 31 projects

and evolves legacy software systems (mainly developed in

Java 6), and another one that develops greenfield software

systems, working with newer technologies (e.g., Java 8). This

particular greenfield line of work also follows agile practices

with monthly deliveries. Our analysis confirms the intuition

that greenfield projects fix issues faster, and also have more

issues fixed in total (1,862 for 26 greenfield projects vs 1,367

for 31 legacy projects). Conversely, legacy projects have a

significantly larger number of open issues (27,599 vs 14,728

from greenfield projects).

Moreover, we also investigate whether or not the “severity”

of the issues influences the interval in days for fixing the

reported problems (see the boxplots in Figure 8). To further in-

vestigate this aspect, we executed the non-parametric Kruskal-



Wallis test and the Dunn test method for comparing mean

differences, which (a) reveal that the severity factor influences

the time for fixing issues (p–value < 2.2e−16), and (b) give

evidence that the Blocker and Minor severity categories are

fixed in less time than the other categories. Figure 6 shows

the outcomes of the Dunn test. We actually found surprising

the observation that Minor issues have been fixed faster than

Major and Critical issues. A possible reason might be that

Minor issues are simpler to solve than the other issues.

Col Mean-|

Row Mean | BLOCKER CRITICAL INFO MAJOR

---------+--------------------------------------------

CRITICAL | -10.48

| 0.0000*
|

INFO | -9.83 -0.32

| 0.0000* 0.3717

|

MAJOR | -3.19 23.13 14.30

| 0.0007* 0.0000* 0.0000*
|

MINOR | -0.69 29.67 18.60 12.48

| 0.2445 0.0000* 0.0000* 0.0000*

alpha = 0.05

Reject Ho if p <= alpha/2

Fig. 6. Mean differences of the interval in days to fix issues, considering the
severity of the issues

Blocker and Minor issues are solved faster than the other

categories.
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Fig. 7. Number of issues fixed after one year they had been reported

In order to further investigate our first research question,

we also considered the frequency in which developers fix the

issues reported by SonarQube. To this end, we computed a

number of metrics for each project P .

MinDate(P) The first date an issue have been reported for a

project P .

MaxDate(P) The last date an issue have been reported for a

project P .
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Fig. 8. Descriptive statistics with the interval in days to fix reported issues
(grouped by severity)

Interval(P) The difference between the max and min

dates for a project P (computed as MaxDate(P ) −

MinDate(P ) + 1).

ODD(P) The number of distinct dates in which at least one

issue has been opened in a project P .

FDD(P) The number of distinct dates in which at least one

issue has appeared as fixed in a project P .

OpenFreq(P) The frequency in the interval where at least

one issue have been opened in a project P (computed as

ODD(P ) ∗ 100/Interval(P )).
FixFreq(P) The frequency in the interval where at least one

issue have been fixed in a project P (computed as

FDD(P ) ∗ 100/Interval(P )).

Table V summarizes some descriptive statistics related to

these metrics. Based on Interval(P), it is possible to realize

that most projects in our dataset are using SonarQube for at

least one year (median of Interval(P) is 415 days). Consid-

ering the full interval in days where the projects were using

SonarQube, on average, issues have been reported in 15.47%

of the days. A possible explanation is that, when a project

starts using a static analysis tool (like SonarQube), several

issues are reported at once. After that, while the development

of a system makes progress, the frequency in which new flaws

are introduced and reported becomes sparse (with seasonal

peaks where many flaws are reported). Surely, this might

also indicates either that SonarQube is not integrated into the

development processes or that there is a lack of activity.

More interesting is that issues are less frequently fixed

than they are reported—that is, on average, we found fixes

in 9.91% of the days between MinDate(P) and MaxDate(P)

for a given project P . We investigate the correlation (using

the Spearman’s method) between the total of distinct days the

issues have been fixed (FDD(P)) and the total number of fixed

issues of a project P . We find a moderate correlation within all

organizations (EF with the least has 0.59, whereas ASF had

the maximum of 0.69). This does not support the argument

that issues are often fixed in “batch”. Batch examples in the

ASF ecosystem are projects LDAP API, with 15 distinct dates

and 6,832 fixed issues, and Myfaces, with 7 distinct dates and



3,856 fixed issues.

TABLE V
SOME DESCRIPTIVE STATISTICS RELATED TO THE FREQUENCY BASED

METRICS

Metric Median Mean SD

Interval(P) 415 days 667 days 772.71

OpenFreq(P) 4.71% 15.47% 26.07%

FixFreq(P) 0.67% 9.91% 25.61%

Therefore, the frequency in which new issues are either

reported or fixed is relatively sparse, which might in-

dicates that (1) SonarQube is not part of continuous

integration workflows or that (2) developers do not act

immediately when a new issue arises. Based on our

findings, we can conclude that developers rarely fix issues

reported by SonarQube.

Finally, we also investigate if there are specific days in

which developers fix more issues. To this end, we collect the

total number of issues fixed in each day of the week for each

organization. Table VI reports the results. We found many fixes

of TCU appearing on Saturdays (22.5% of them) and many

fixes of the Eclipse Foundation appearing on Sundays (22.8%).

Overall, 12.4% of the fixes occurred during the weekends (EF:

40%, ASF: 3.3%, TCU: 25.9%, and PF: 0%). Contrasting to

the other organizations whose fixes appear more frequently

during the weekdays. Actually, PF does not have any issues

fixed on the weekends.

TABLE VI
ISSUES FIXED PER DAY OF THE WEEK

Org. Sun Mon Tue Wed Thu Fri Sat

EF 1,294 1,284 605 1,132 923 1,031 699

ASF 383 724 7,470 1,520 5,515 961 158

TCU 218 1,015 1,390 1,874 2,253 1,428 1,843

PF 0 949 78 1,400 219 583 0

Total 1,895 3,972 9,543 5,926 8,910 4,003 2,700

C. What are the SonarQube issues that developers fix more

frequently? (RQ3)

In our study we mined 36,974 fixed issues from all or-

ganizations. Even though the number of fixed violations is

significantly low in comparison to the number of open viola-

tions, we still find some open issues that are worth fixing. To

answer this research question, we studied the rules associated

to the reported issues. Eclipse employs a deprecated rule by

the SonarQube team which says that Cycles between packages

should be removed. Since this rule is frequently fixed on

EF’s dataset, we introduce the type Deprecated to classify

it. We found that both EF and ASF modify configurations

for rules, either activating/deactivating rules, or changing rules

severities. For instance, EF deactivates the rule Useless imports

TABLE VII
MOST FREQUENTLY FIXED ISSUES BY TYPE IN EACH ORGANIZATION

Org. Code Smell Vulnerability Bug Deprecated

EF 2,533 399 116 3,945

ASF 15,077 322 1,332 –

TCU 8,837 677 507 –

PF 2,968 60 201 –

Total 29,415 (79.6%) 1,458 (3.9%) 2,156 (5.8%) 3,945 (10.7%)

shoud be removed, which is the 10th most fixed rule in our

dataset. As a result, this rule is not related to any violations

in EF.

At first, we quantify all fixed issues from all organizations’

projects. We then classify them by their type, as shown in

Table VII. It is possible to see that Code Smells are responsible

for a high percentage (almost 80%) of all fixed issues. As we

show in Table VIII, Minor issues are responsible for 21%

of the fixed issues, and Info issues for 2.5%. We also find

contrasting results regarding vulnerabilities as in our study:

they represent approximately 4% of the total number of fixes,

when compared to 0.2% and 0.5% reported in [12] and [13],

respectively.

TABLE VIII
MOST FREQUENTLY FIXED ISSUES CLASSIFYING SEVERITY TO TYPE

Severity Code Smell Vulnerability Bug Deprecated Total

Major 19,732 496 972 3,945 25,145 (68%)

Minor 7,683 53 91 – 7,827 (21.2%)

Critical 943 883 697 – 2,523 (6.8%)

Info 944 6 – – 950 (2.6%)

Blocker 113 20 396 – 529 (1.4%)

Table IX presents the ten most frequently fixed issues. It is

worthy noting that the five most fixed Minor issues correspond

to almost 17% of the total fixed issues. Not surprisingly,

Code Smells and Major issues are prevalent in the selection.

Although code smells is the most fixed issues type, it is also

responsible for the ten most frequent open issues, with six of

them having a Major severity. Since Major issues can highly

impact developers of a system (see II) and also represent a

predominantly large portion (68%) of the fixed issues, we

question whether ASATs issue prioritization is as ineffective

as reported in related works [13], [26].

We find that a frequently fixed issue does not incur in high

fixing rate. We found that two issues, Sections of code should

not be commented out and Generic exceptions should never

be thrown, are also present in the ten most common opened

issues. If we consider 20 issues for both most fixed and most

opened, there are 9 common issues between the two lists.

Finally, we investigate the occurrence of Won’t fix and

False-positive issues. We argue that marking an issue as one

of these resolutions is similar to the process of fixing a

violation. The developer has to filter the specific issue among

all others, assess if it truly represents a quality flaw worthy of

https://jira.sonarsource.com/browse/SONARJAVA-1717


fixing, and then she must take an action. With that in mind,

developers do tend to flag issues as won’t fix and/or false-

positive. Apache’s projects flagged a total of 10.168 issues

with these resolutions. We encounter similar findings when

comparing ASF’s ten most issues flagged as won’t fix/false-

positive and the foundation’s ten most opened issues. There is

a common subset of 5 issues among the two. These findings

suggests that no rule is always fixed, regardless of context.

Developers seem to consider other factors to decide whether

to fix an issue or not.

Code smells and Major issues are highly prevalent

among most of all issues’ types and severities. We found

common issues among the top ten most fixed, wont’t fix

/ false-positive, and opened issues. This suggests that

developers consider a variety of factors when deciding

whether to fix an issue.

EF and TCU SonarQube instances have a large number of

customized rules. When comparing those rules to rules that

are available in a fresh SonarQube installation, EF has 1.163

additional rules, and TCU has 1.533. Nonetheless, we found

that just a subset of these rules actually lead to issues’ reports.

Overall, 122 unique rules are associated to fixed issues in EF,

with 104 custom rules, which represents 7% of the total of

custom rules. In TCU 250 unique rules are associated to fixed

issues, with 141 custom rules, or 9% of TCU’s custom rules.

D. How is the distribution of the SonarQube issues? (RQ4)

Taking into account the results of the previous section, here

we answer our fourth research question, which investigates the

concentration of the rules (20% of the rules correspond to 80%

of the fixes) and the concentration of the files (20% of the files

concentrate 80% of the issues). Answering to this question

might help practitioners (a) to select a subset of rules that

should be fixed (for instance, due to its relevance for source

code improvement or easiness of fixing) or (b) to concentrate

quality assurance activities in certain files of a project.

Considering all projects, we found a total of 412 rules

having at least one fix. In this way, we consider the 82 most

frequent fixed rules to answer RQ4—where 82 corresponds to

20% of the 412 rules. These 82 rules are related to 32,717

fixes. Since our dataset comprises 36,959, the 20% most

frequent fixed rules correspond to 88.52% of all fixed issues.

We publish this list of most frequent fixed rules in the paper’s

website (omitted here due to the blind review process).

We further analyse our dataset to verify which projects

follow the distribution 20% of the rules correspond to 80%

of the fixes). To avoid bias due to a small number of fixes, we

constrain our analysis to projects having at least 16 fixes and

190 files (the median number of fixes and files per project,

respectively), leading to a total of 80 projects. We found 62

projects (77.5%) in the rule 20% of the rules correspond to

80% of the fixes, which suggests that it would be possible to

reduce the number of reported issues (and avoid false-positives

and issues that would not be fixed) by correctly configuring

SonarQube to report a relatively small subset of all rules—

those issues that are more likely to be fixed.

Another recurrent question that arises in the literature [27],

[28], [29] is whether or not 20% of the modules (files)

are responsible for 80% of the issues (bugs in the exist-

ing literature). Investigating this issue might not only help

managers to concentrate quality assurance activities on a

subset of the modules of a project, but also might open new

research directions to predict which files are more expected

to present design flaws. More precisely, here we investigate

if 20% of the files of each project (with at least 16 fixes

and 190 files in our dataset) concentrate at least 80% of

the issues. Interesting, we did not find any project satisfying

this distribution. Considering the median statistic, the top

20% of files containing more issues represent 35.79% of all

issues of a project (mean: 37.23 and max: 63.37). Comparing

with the literature aforementioned, which suggests a higher

concentration of bugs, we can conclude that static analysis

issues are more widespread throughout the modules of a

system than bugs.

We found that 20% of the rules correspond to 80% of

the fixes, and that the issues reported by static analysis

tools are not localized in a relatively small subset of the

files of the projects.

V. DISCUSSION

Our findings show contrasting results at first. Practitioners

find ASATs reports relevant to the software development

process, and, in some situations, reject pull-requests or even

postpone the release of a software based on the outcomes of

these tools.

Our investigation also reveals that the resolution time for fix-

ing issues is faster than the time previously reported for fixing

bugs. Although these results strongly support that developers

indeed use ASATs and take their warnings in consideration,

we find that fixed issues only represent 8.76% of the 421,976

mined issues, which suggests that not all issues are relevant to

developers, as supported by the finding that 20% of the rules

correspond to 80% of the fixes.

Our results also indicate that practitioners can greatly benefit

from the usage of ASATs if they properly configure them to

mostly consider rules that they find relevant and are more

likely to fix. This might help to control the pressure related to

the technical debt of the systems, often calculated using ASAT

reports. Developers could also benefit from tool support to fix

ASATs issues, since most of them consider important the use

of tools that provide automatic fixes, but at the same time most

never or rarely use them. We envision that our findings, such

as the big prevalence of fixed Code Smells and Major issues,

can provide insights to tools developers.

Our findings still unfold several unanswered observations

pertaining to the comprehension on how developers fix and

perceive ASAT issues. An organization, or a particular team

or project, might have a policy to fix all major issues, thus

impacting on which kind of violations are fixed. In cases that



TABLE IX
MOST FREQUENTLY FIXED ISSUES IN ALL ORGANIZATIONS

Issue Type Severity Count EF ASF PF TCU

Cycles between packages should be removed Da Major 3,945 (10.7%) 3,945 (100%) 0 (0%) 0 (0%) 0 (0%)

Checked exceptions should not be thrown CSb Major 2,053 (5.5%) 0 (0%) 0 (0%) 0 (0%) 2,053 (100%)

Sections of code should not be commented out CS Major 1,903 (5.1%) 182 (9.6%) 1,014 (53.3%) 364 (19.1%) 343 (18%)

The diamond operator should be used CS Minor 1,871 (5%) 0 (0%) 1,716 (91.7%) 155 (8.3%) 0 (0%)

Nested code blocks should not be used CS Minor 1,380 (3.7%) 0 (0%) 1,374 (99.6%) 6 (0.4%) 0 (0%)

throws declarations should not be superfluous CS Minor 1,352 (3.6%) 0 (0%) 623 (46.1%) 77 (5.7%) 652 (48.2%)

Generic exceptions should never be thrown CS Major 1,334 (3.6%) 59 (4.4%) 129 (9.7%) 20 (1.5%) 1,126 (84.4%)

Redundant pairs of parentheses should be removed CS Major 961 (2.6%) 0 (0%) 741 (77.1%) 109 (11.3%) 111 (11.6%)

Local variable and method parameter names

should comply with a naming convention CS Minor 823 (2.2%) 16 (2%) 774 (94%) 33 (4%) 0 (0%)

Useless imports should be removed CS Minor 784 (2.1%) 0 (0%) 517 (66%) 180 (23%) 87 (11%)

a Deprecated
b Code Smell

ASATs are integrated in the development workflow, several

reasons for developers not fixing issues are possible, such as

lack of configuration, unawareness on how to perform fixes,

value of fixing an issue, or even time pressure. These open

questions suggest future research focused on organizations,

and/or teams / projects, that use ASATs as part of their

workflow.

Finally, mining issues from SonarQube can be challenging,

specially when considering different instance versions and

different host organizations. To help further research aiming at

mining SonarQube issues, we recommend researchers to mine

rules for the chosen language(s). As an example, EF most

fixed rule was a custom one, that would not be analyzed if

rules were not mined or a revision approach was used.

VI. THREATS TO VALIDITY

Identifying if an issue is fixed intentionally is a commonly

reported threat among studies that analyze ASATs [12], [13],

[26]. Common mitigation strategies involve mining source

code management repositories to look for patterns in commit

messages[5], [13], [26], or to find references for bug reports

identifiers, such as #4223, that are hosted on issue management

platforms [26]. Although in our study we did not mine

commits, we minimize the threat on our private dataset, as we

know for sure, by means of our collaborations, that PF and

TCU developers use SonarQube. Regarding OSS projects, we

have indication that SonarQube is used, as for ASF we had

respondents in our survey, and for EF, SonarQube is mandatory

for projects that aim to achieve a higher maturity assessment.

We believe that the projects we studied in this work are well

suited for our analyses. Our results might be partially gener-

alized to companies and OSS projects. We study 246 projects,

155 from large Brazilian government institutions, and 91
OSS projects from two well-known open-source foundations.

However, since Eclipse Foundation and Apache Software

Foundation are well matured foundations, with well defined

standards and practices, they may not represent the general

OSS community. Our choice of SonarQube as the targeted

ASAT for this study might not properly contextualize general

usage of ASATs. We believe that this threat is minimized as

SonarQube is used by more than 85,000 organizations, and

also encompasses rules from other ASATs, such as FindBugs,

and PMD [10].

Our technical decisions might also introduce some threats

to internal validity. That is, since we mined data from different

versions of SonarQube instances, with different APIs, our

approach for data extraction and filtering might have errors.

However, we manually verified parts of our data, and in some

cases we verified both our data and findings with collaborators

from TCU and PF. Another major threat is the reliance on

measuring issues’ open and creations dates only from the data

extracted from SonarQube. It is possible that an issue fix, for

example, may have happened in a different moment than the

tool was run, and thus the date reported by SonarQube might

not reflect a precise date/time on when the issue was fixed.

As we observed in PF, this limitation may be minimized by

nightly builds (tools are executed automatically at the end of

each day). We tried to mitigate several conclusion threats by

running all statistic analysis in pairs. At least two authors of

this paper double-checked the procedures, statistical methods

we use, and results.

VII. RELATED WORK

Beller et al. [11] performed a large-scale evaluation on

how nine different ASATs are used. They investigate how

ASATs are configured by analyzing 168 214 OSS projects,

for Java and other three popular programming languages, and

reported that the default configurations of most tools fits the

needs of the majority of projects–custom rules are used in

less than 5% of the cases. We find diverging results as we

argue that developers should choose more carefully the rules

ASATs check, and a big portion of EF and TCU fixed rules

are related to custom rules. Regarding ASAT usage in a CI

context, Rausch et al. [30] performed an in-depth analysis of

the build failures of 14 projects, and found that 10 of these

projects present a history of build failures related to violations

reported by ASATs. Zampetti et al. [5] analyze 20 Java OSS

projects and report that build breakages are mainly related to

adherence to coding guidelines, while build failures originated

by potential bugs or vulnerabilities do not occur frequently.

https://wiki.eclipse.org/SonarQube


Our results confirm that a large portion of fixed issues are

related to code smells, which cover coding standards and other

aspects.

Vassalo et al. [10] conducted a study on 119 OSS projects,

mined from SonarCloud (cloud service based on SonarQube),

and concluded that developers check code quality only at the

end of a sprint, contrary to CI principles. In this study we

find that developers tend to fix issues from 216.60 days to

299.12 on average, after they had been reported. However,

we find in ASF’s projects a central tendency to fix issues

in 6.67 days after the report. Kim and Ernest [26] observed

warnings by three distinct ASATs, finding that no more than

9% are removed during fix changes. They suggest that issues’

prioritization given by ASATs are ineffective. We question

ASAT’s ineffectiveness on prioritizing issues, largely due to

developers mainly fixing Major issues, which are supposed to

highly impact developers’ productivity.

Recently, studies have focused on what kind of violations

developers tend to fix. Liu et al. [13] collected and tracked

a large number of FindBugs fixed and unfixed violations

across revisions of 730 Java projects. They observed cases that

warnings are systematically ignored, and violations categories

that are frequently fixed. Furthermore, they found that most

developers do not use FindBugs as part of their development

tools. Digkas et al. [12] analyzed 57 Java projects from Apache

Software Foundation to find what kind of SonarQube issues

are fixed and the amount of Technical Debt that is paid over

time. Their findings revealed that a small subset of issues is

responsible for a large portion of fixes. They extract several

statistics from fixed violations, such as most frequent types

resolved for all categories and issues with highest and lowest

fixing rate. Their study was restricted to only issues with

Blocker, Critical and Major severities.

Our study differs from [13] and [12] by mining data

from real AST (SonarQube) usage. Both studies mention the

challenges of analyzing violations from revisions of project

source code, more importantly in regard to the very high cost

to run the tools in this fashion, which can be done either by

analyzing all revisions [13] or limiting the analysis to weekly

revisions [12]. The last approach can harm analyses that

investigate time sensitive data, such as our research question

RQ2. Another problem with this approach is that the lack of

build information frequently leads to false positives [12] (e.g.,

a Java 8 rule might trigger violations in a Java 7 project).

Moreover, custom configurations and rules are ignored as they

run fresh installations of the ASATs. We found in EF and ASF

that some rules had their severities changed, and others were

deactivated. Lastly, issues that are resolved as either won’t fix,

or false-positive, would never be identified in this setting. Not

only our study avoid all these issues, we are assured that the

entirety of the projects that compose our dataset are configured

to use SonarQube. We argue that this fact has significant

impact on how developers fix and perceive issue reports from

ASATs.

VIII. CONCLUSION

In this work we reported the results of a multi-method

study about how developers use SonarQube (one of the most

used tools for static quality assurance). We first collected

the perceptions of 18 developers from different organizations,

regarding the use of static analysis tools. Most respondents of

the survey agree that these tools are relevant for the overall

improvement of software quality. By mining four instances of

SonarQube, we built a general comprehension of the practices

for fixing issues that this tool reports. We found a low rate

of fixed issues and that one-third of the fixes occurs after one

year of the issue’s report. In addition, we showed evidences

that 20% of the violation rules correspond to 80% of the fixes,

which can assist practitioners to properly select a subset of

rules that are relevant, and discard rules that are rarely fixed.
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