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Abstract—Recent refactoring research introduced several inno-
vations addressing diverse goals, such code extensibility, reusabil-
ity, and testability. However, energy consumption, a critical prop-
erty of any software system, remains unaddressed by refactoring
research. In this paper, we provide an accounting of some of the
recent and successful state-of-the-art research on software energy
consumption. Through an investigation on premiere software
engineering venues, we identify and discuss 12 contributions
that can be further instantiated in refactoring tools used to
improve software energy efficiency — and the challenges behind
this process. These opportunities span a wide range of software
characteristics, such as mobile applications and concurrent pro-
gramming. Mobile applications is the topic with the greatest
number of opportunities (6 out of 11). The study serves as a
call to action for refactoring researchers interested in software
energy consumption issues.

I. INTRODUCTION

Refactorings [10] are source to source transformations that
change the structure of a program but not its behavior. Refac-
toring has several benefits, such as reducing code clones and
program size, reinforcing coding patterns, and improving mod-
ularity [20]. Such benefits can improve developer productivity
by making software systems easier to maintain and understand.
Agile advocates go further and claim that a lack of refactoring
incurs technical debt [4].

Refactoring benefits are likely to go beyond understand-
ability, covering different requirements such as extensibility,
reusability, and testability. Also, recent research has succeed
in applying refactoring to improve quality attributes such as
performance [35] and correctness [9]. Nonetheless, one grand
challenge that has so far received much less attention is energy
consumption. Despite the benefits of refactoring, to the best
of our knowledge, there is a lack of refactoring approaches
focusing on improving the energy efficiency of a software
system. This is unfortunate for at least three reasons: (1)
due sustainability reasons, energy is increasingly a first-order
concern in any computing systems; (2) with the widespread
use of mobile platforms, there is considerable evidence that
battery usage is a key factor for evaluating and adopting
mobile applications [52]; and (3) applications consuming less
energy can incur in less money spent on cooling costs. A
robust refactoring tool to improve software energy efficiency
could thus be highly beneficial for energy-aware programmers,
with immediate practical impact.

A first decision that needs to be made when deriving a
refactoring is to determine the appropriate level of abstraction
for appyling it. In this study we focus on the application level.
This decision is based on the fact that while the strategy of
leaving the energy consumption optimization problem to the
lower-level layers has been successful, recent work showed
that even better results can be achieved by empowering and
encouraging software developers to participate in the pro-
cess [1], [21], [27], [39]. Thus, we believe that educating and
empowering software developers with usable and useful tools
can play a prominent role in reducing the energy consumption
of the applications they write.

In order to derive new refactorings, it is necessary to gain a
deep understanding of the domain in which the refactoring
will work. Notwithstanding, developing an energy-efficient
software is not an easy task. One of the fundamental problems
in this task is to understand where energy is being consumed
and how the code can be re-organized in order to reduce
the energy consumed. Energy consumption estimation tools
do exist (e.g., [12], [25], [28]), but they do not solve this
problem because (1) they require an in-depth knowledge of
low-level implementation details and programmers under time
pressure have little chance to learn how to use them; and (2)
they do not provide direct guidance on energy optimization,
i.e., bridging the gap between understanding where energy is
consumed and understanding how the code can be modified
in order to reduce energy consumption. With no other option,
programmers need to search for energy saving best practices
on software development forums and blogs. Unfortunately,
many of these guidelines are anecdotal, not supported by
empirical evidences, or even incorrect [40]. This brings us
to our main research question:

RQ. What are the opportunities, and their inherent challenges,
to derive new refactorings focusing on improving the
energy efficiency of a software system?

This paper is aimed at providing answers to this timely but
overlooked question. We mitigate this problem by investigating
the state of the art of software energy consumption research
and pointing out possible refactoring opportunities — and
the challenges behind them. For this investigation, we have
reviewed related literature on software energy consumption
research published at top software engineering conferences



such as ICSE and ESEC/FSE. In this mining process, we
initially found a total of 20 research papers. However, after
applying some filters, e.g., if the paper presents an empirical
study, we selected 14 of them (see Section II for details).

The main findings of this study are the following:
• We observe that software energy consumption is an

emerging topic; the first research paper found is from
2012, and the number of accepted papers is increasing
over the years.

• We identify 11 opportunities to refactor for energy effi-
ciency. These opportunities span a wide range of software
characteristics, such as mobile applications and concur-
rent programming. Mobile applications is the topic with
the greatest number of opportunities (6 out of 11).

• We identify at least one challenge for each one of the
opportunities. We also found related research that succeed
in overcoming similar challenges.

II. METHODOLOGY

In this section we describe our empirical study. Since we are
interested in refactoring opportunities that can be used on the
application level, we decided to use research papers published
on top software engineering conferences as our dataset. We
restrict our attention to eight of the most prominent software
engineering publication venues:

• ASE: International Conference on Automated Software
Engineering

• ESEC/FSE: International Symposium on the Founda-
tions of Software Engineering

• ICSE: International Conference on Software Engineering
• ICSME: International Conference on Software Mainte-

nance and Evolution
• OOPSLA: Object-Oriented Programming Systems, Lan-

guages, and Applications
• ECOOP: European Conference on Object-Oriented Pro-

gramming
• ISSTA: International Symposium on Software Testing

and Analysis
• CSMR: European Conference on Software Maintenance

and Reengineering
We chose such conferences because they are highly compet-

itive software engineering conferences [50]. Thus, studies pub-
lished there tend to be mature and backed by solid evidences.
Since this is still ongoing work, we left some important events
such as MSR, ICST and ESEM for future research.

The data we have analyzed was restricted to the main
research track of each conference. For all considered confer-
ences, we manually searched in their proceedings for “energy”
and “power” keywords in the title and in the abstracts of
the accepted papers. Since energy consumption of high-level
applications is a new and emerging topic of research, our
extracted data covers a period of 10 years (i.e, 2005 — 2014).
After this extraction phase, a total of 20 papers were found.
Table I describes the total of papers found per conference.

From this initial set, no paper is older than 2012; this shows
the emerging character of the field. Among the selected papers,

TABLE I
PAPERS PER CONFERENCE.

Conference Selected Papers
ICSE 5 [3], [12], [27], [30], [33]
ASE 1 [34]
ESEC/FSE 1 [2]
OOPSLA 6 [8], [18], [19], [31], [32], [41]
ECOOP 0 —
ICSME 3 [21], [24], [43]
ISSTA 2 [25], [26]
CSMR 2 [17], [45]

3 were published in 2012 (ASE: [34], CSMR [17], OOPSLA:
[8]), 6 in 2013 (CSMR: [45], ICSE: [3], [12], OOPSLA: [19],
ICSME: [21], ISSTA: [25]), and 11 in 2014 (ICSE: [27],
[30], [33], ESEC/FSE: [2], OOPSLA: [18], [31], [32], [41],
ICSME: [24], [43], ISSTA: [26]).

We thoroughly read and categorized each of the selected
papers in terms of their main technique or approach used to
improve energy consumption. We discard papers that focus
only on energy consumption tooling and do not provide a
comprehensive case study of application energy character-
istics. Without such useful information, it is not possible
to understand where energy is expended in an application,
and thus derive new refactorings. Thus, we discarded [25].
Also, we discard runtime systems which performs energy
optimizations behind the scenes, without changing the source
code. However, we kept studies that used runtime systems,
and modified the application source code. Studies that do not
modify the source code do not give us any insight for source to
source transformations. Thus, we removed [19], [30]. Still, we
do not consider papers that do not provide empirical evidence
that the proposed approach is effectively saving energy. Thus,
we discarded [17]. Finally, we discard papers that has little
to do with refactoring. Thus, we discard [26], [32]. After this
filtering process, 14 papers were selected.

III. RESULTS

In this section we present the results for our empirical study.
For each category found, we provide a brief description of
the problem, the refactoring opportunity, and the challenges
behind it.

A. Mobile applications

Mobile devices, especially smartphones and tablets, de-
rive the energy required for their operation from batteries,
which are limited in size and therefore capacity. This implies
that managing energy consumption well is of great impor-
tance. This fact encourages mobile programmers to employ
energy-aware best practices. Furthermore, as Carroll and col-
leagues [7] have pointed out, graphics, GSM and CPU core
are some of the most energy-consuming components on a
smartphone. We now present some refactoring opportunities
focusing on these components.

User Interfaces: Li et al. [27] have showed an average of
40% reduction on display’s power consumption. This happens



because, according to the authors, “in OLED displays, darker
colors, such as black, require less energy to display than lighter
ones, such as white”. The authors then create an automated
rewriting technique for changing lighter colors to darker ones
in page candidates. However, an automatic approach does not
deal with the problem of not achieving the desirable interface.
Refactoring can mitigate this problem by providing step-by-
step user interface transformations. Refactoring can succeed at
different levels here. For instance, web designers should use
refactoring techniques. Since most of the coding style activity
is done in cascading style sheets (CSS) files, refactoring
engines should be integrated with well-known CSS editing
tools. Also, not only for web applications, this technique can
also be used in native mobile applications. When developing a
mobile user interface, a programmer should have the option to
refactor to a more energy-efficient color. Thus, the refactoring
engine should map each possible color to its energy-efficient
counterpart.

Challenges: There are several significant challenges to cre-
ating such refactorings. One of them is to properly identify
the colors used in a web application. Most modern web appli-
cations combine dynamically generated pages and cascading
style sheets. The refactoring tool should analyze different,
and scattered, dependency files to figure out where colors are
defined. On mobile applications, on the other hand, taking
an example of Android applications, the interfaces editing
files are xml-based. Complex and dynamic interfaces should
require several file hierarchies, and the interaction between
them is ruled by Java code. Refactoring engines should be
smart enough to follow all these dependencies.

CPU Offloading: Kwon et al. [21] have described a tech-
nique to offload CPU intensive computations from a mobile
device to the cloud, thus reducing battery usage. However,
not all possible CPU intensive computations can be offloaded,
since offloading is not free. It does pay a toll on energy
consumption, mainly due GSM and Wi-Fi power consumption
for transmitting data over the network. The trade-off of using
this technique relies on the execution time of the computation;
if it is small, the energy cost of network communications
outweighs the savings afforded by offloading. However, when
carefully applied, this technique can reduce the overall energy
consumption of a mobile application by up to 50%. However,
to take advantage of the benefits of the cloud, developers face
a high entry barrier. They need expertise on many topics:
communication protocols, data storage, databases, and cloud
infrastructure. Moreover, the manual set up of the cloud
environment is tedious, error-prone and omission-prone. A
refactoring engine can greatly lower the entry barrier by
setting up the environment to allow beginner developers to
partition their mobile applications, so that the energy intensive
functionality can be executed in the cloud.

Challenges: The refactoring engine has two main challenges
here. The first one is to determine whether the computation
is worth refactoring, that is, if offloading will not turn out to
be more expensive than performing the computation locally.
Refactoring engines can take advantage of energy consumption

estimation tools to help programmers to decide when to
refactor. Second, if a programmer agrees with the refactoring,
the refactoring engine needs to set up the environment to
receive the computation in the cloud. While starting a virtual
machine with default settings can be seem as trivial, set up
a particular configuration to work with a particular piece
of refactored code would require sophisticated source code
analysis [54]. However, recent efforts have showed that such
challenges can be overcome [13].

HTTP Requests: Li et al. [24] presented the first large
scale study on the energy efficiency of mobile applications.
Among the findings, they describe two remarkable ones: (1) a
small number of APIs used in applications dominate non-idle
energy consumption, and (2) HTTP request is the most energy
consuming operation of the network. Likewise, Noureddine et
al. [34] also observed that the highest power consumption
methods on the Jetty Web Server came from classes that
manage HTTP requests. Work by Hao et al. [12], examined
the energy hotspots of mobile applications and, for most of
the target systems, HTTP usage consumed the most energy.
We believe that refactoring engines can play a role here. For
instance, a refactoring engine should be able to identify such
energy consuming APIs, and replace them by energy-friendly
ones.

Challenges: Although some energy-intensive APIs have an
energy-friendly counterpart (e.g., the power efficient work
queue1 which is a power-oriented implementation of a queue),
this is no the case for a number of them. Refactoring tools
should keep track of the cutting edge research on energy-
efficient APIs. For those APIs which do not have an energy-
efficient implementation, refactoring tools should favor “light-
weight implementations”. For instance, webservices can be
implemented using at least two common approaches: SOAP
and REST, which greatly differ in their internal characteristics.
While REST is more flexible and light-weight, SOAP is
more detailed and heavy-weight. In the absence of an energy-
efficient implementation, refactoring tools should support the
transition to more light-weight components.

Software Piracy: Piracy is an issue that greatly impacts app
revenue. The most commonly used approach for preventing
piracy is code obfuscation, that is, making the code of an
application more difficult to understand. However, according to
Sahin et al. [43], obfuscations techniques used on mobile ap-
plications are likely to impact their energy usage. The authors
report an average energy increase of of 2.1%. Refactoring tools
can take advantage of this fact and implement more energy-
efficient code obfuscation techniques.

Challenges: Writing a novel energy-efficient obfuscation
technique is not an easy task. Taking in consideration the
“spaghetti logic” example, described in the aforementioned
study, it inserts branching and conditional instructions in the
body of the methods. While additional instructions are likely
to increase the absolute size of the program, and thus energy
usage, they can also introduce logic bugs into the code. Using

1http://lwn.net/Articles/548281/

http://lwn.net/Articles/548281/


two well-known compiler optimizations, peephole and inline
optimizations, we believe that refactoring engines improve the
energy efficiency of the generated code. However, this requires
empirical evidence.

I/O Operations: In Banerjee et al. [2], similarly to Li
et al. [24], the authors argued that I/O utilities contribute
significantly to the energy consumption of a mobile appli-
cation. Among the findings, the authors observed a particular
application whose GPS module continues to run for a few
seconds even after the application exits. Behind the scenes, a
third-party advertisement module was responsible for keeping
the GPS alive. Such advertisement module was running on the
main thread, and any delay in loading the advertisement from
the network stalls the main thread. Refactoring tools can be
useful here by putting features that are additional to the re-
quirements of users (e.g. advertisements), in separate daemon
asynchronous threads. Then, when the main application exits,
all the other related threads would also exist, avoiding energy
waste.

Challenges: In order to improve reuse, such additional fea-
tures are usually released as binary code on external libraries,
which prevents programmers from understanding the ineffi-
ciencies behind them. Thus, the application becomes a black-
box, and when one energy-inefficient component is invoked,
developers without appropriated tools can no longer realize
that. If the documentation does not clearly provide an useful
description of the used library, it will become difficult for a
programmer to identify such energy-intensive computations.
The refactoring tool, then, should have the ability to detect
such energy intensive functions, in particular when the source
code is not available. However, this would require an in-depth
investigation of all used external libraries, which in turn can
be time consuming for the refactoring engine be practical.

Continuously Running App: Modern mobile applications are
continuously-running, periodically sending and receiving data
from servers. Such cumulatively behavior can greatly impact
battery usage. Nikzad et al. [33] presents a technique that
delays the execution of continuously-running power-hungry
code fragments. To do so, developers must annotate the places
in the source code in which the execution should be delayed.
At the appropriate will then run these operations in bulk,
reducing the cost of sending one at a time without sacrificing
application integrity. The authors reported an energy savings
of 63% when compared to the case when there is no coordina-
tion. Refactoring tools can ease the communication between
programmers and the runtime system, as well as reducing the
burden of writing such declarative annotation language.

Challenges: Due to the use of an annotation language based
on non-structured text files, the refactoring tool should be
able to work with them. Also, the refactoring tool should be
integrated with the other existing refactorings. For instance,
when a programmer is renaming a class, and if some of the
methods of this class are already flagged to be used by the
runtime system, the refactoring tool should be notified in order
to update the configuration file to use the new fully qualified
name.

B. Concurrent/Parallel programming

To better leverage multicore technology, applications must
be concurrent, which poses a challenge, since it is well-known
that concurrent programming is hard [46]. We found some
papers studying the relationship between concurrent program-
ming, performance and energy consumption [18], [41], [42].
Even though no consensus has emerged from it, and despite
the highly complex landscape, the authors identified some
recurring patterns.

Excessive Copy Chains: The ForkJoin framework [22],
available since version 1.7 of the Java programming language,
stands as a natural solution for parallel, fine-grained, divide-
and-conquer algorithms, in particular, when recursive tasks are
completely independent. However, Pinto et al. [41] observed
that a great amount of energy can be wasted if the data passed
through the recursive steps is copied instead of shared. The
authors observed an energy saving of 15.38% when the data
is shared instead of copied.

Challenges: One of the main challenges here is identify
this copy pattern. Even though the programmer can make a
copy using the System.arraycopy() method explicitly
inside the parallel computation method, this is not the only
possible scenario. Several utility classes in the java.util
library make use of this method internally. One example is the
Arrays.copyOfRange(). It can also be found in several
collections method. Moreover, for modularity reasons, the
programmer can use the Arrays.copyOfRange() method
in another class/method, or it could be wrapped in a third-
party library. The identification of such scenarios requires a
sophisticated static analysis tool.

Embrace Parallelism: Kambadur and Kim [18] showed that
parallel solutions to some problems can save a great amount of
energy, up to 80% in an extreme case, when compared to the
sequential versions of the same solution. Pinto et al. [41] also
observed that a parallel solutions to some problems are more
energy-friendly than a sequential one. A refactoring engine can
help programmers to identify and refactor such opportunity.

Challenges: First, not all kind of problems can be fully-
parallelizable. Also, due to the natural shared-memory pro-
gramming model present in high-level programming languages
such as Java and C++, parallelism usually implies in coordi-
nated access to shared locations, which in turn implies in syn-
chronization. An automatic parallelization tool should analyze
the places where synchronization is needed and apply synchro-
nization techniques with extreme care, since synchronization
can slow down the performance gained through parallelism.
Also, the energy consumption of a multithreaded program is
not easy to reason about. For instance, if a multi-threaded
program receives a 2x speed-up but, at the same time yields
a fivefold increase in power consumption (as compared with
a single core execution), energy consumption – the product
of power consumption and execution time – and thus energy
efficiency – the amount of work that can be achieved by
consuming a certain amount of energy – degrades as the user
embraces multi-core CPUs.



GPU Programming: The use of Graphics Processing Units
(GPUs) for rendering is well-known, but their power for
general purpose parallel computation has only recently been
explored. Scanniello et al. [45] have defined a strategy for
transferring a CPU-intensive system to a Graphics Process-
ing Unit (GPU) based architecture. Using this approach, the
authors observed an improvement on energy consumption
of over 60%. This refactoring is important because modern
mainstream CPUs have only a few dozens of available cores.
Conversely, GPUs offer the execution of a large number of
threads, making it possible to perform more work in parallel.

Challenges: Again, the refactoring engine should detect
the components that perform computationally intensive tasks.
This component should be wrapped and integrated in a GPU
system. Since GPU and CPU programming do not use the
same programming languages, the refactoring engine should
be able to refactor the input system to a new language, which is
not straightforward. Also, only a few programming languages
have solid support for GPU programming, which reduces the
options for the refactoring tool.

C. Approximate programming

Many software applications offer the opportunity to tolerate
occasional “soft errors”, that is, errors that reduce the qual-
ity of service/solution. Such errors are welcome in certain
applications, if they provide improvements on other system
characteristics, such as an improvement in performance or a
reduction in energy consumption. Many of these applications
have one or more approximate computational kernels that
consume the majority of the execution time. For instance, in a
ray tracing implementation, the renderer method is likely to be
the most time-consuming one. Misailovic and colleagues [31]
have introduced a framework for approximate programming
namely Chisel. A valid Chisel program, is a program written in
a high-level language such as C, and the instructions and vari-
ables stored in unreliable memories are written using Rely [6].
Chiesel then optimizes the problem of selecting approximate
instructions and variables allocated in approximate memories.
Results have showed energy savings ranging from 8.7% to
19.8% in selected applications when compared to the original
ones.

Challenges: This approach only works on emerging approx-
imate hardware platforms. The refactoring tool should first
verify if the current hardware has this support available. Also,
the refactoring tool should provide means for developers to
understand the degree of error produced.

D. DVFS techniques

Dynamic Voltage and Frequency Scaling (DVFS) [38] is a
common CPU feature where the operational frequency and the
supply voltage of the CPU can be dynamically adjusted. It is
one of the most effective power management strategies used in
computer architecture research [23], [49]. In our selection of
studies, two of them [8], [3] focus on using DVFS in a static
way: providing informations to the runtime systems so that
they can decide whether or not to scale the CPU frequency.

Energy Types: In the first study, Cohen et al. [8] have
introduced a new type system to help reason about energy
management. In this type system, the programmer is encour-
aged to think how CPU-intensive each program statement is.
Take for example a system that performs a long-running math
calculation, but also performs some HTTP operations in the
meantime. Using this new type system, a programmer can
declare a partial order phases { http <cpu math; },
meaning “http is less CPU-intensive than math”. This defini-
tion encourages programmers to contribute in their knowledge,
so that DVFS calls are inserted automatically, and the decision
of scaling down/up is conducted by the compiler based on
the partial order. The authors reported an energy saving of
30%-50% in selected benchmarks. Refactoring tools can help
programmers to update their code to use this type system.

Challenges: The introduced type system has two important
language constructs: phases and modes. Such language con-
structs can be introduced at the class level, method level and
variable level. Refactoring tools should take care of which one
should be used, and when, which would require sophisticated
source code analysis.

Stream Programming: In their study, Bartenstein et al. [3]
propose a technique for reducing the energy consumption
of a stream program. Stream programming is a general-
purpose paradigm where software is composed as a stream
graph, which is parallelism-friendly. The proposed approach
is based on a key insight about stream programming: a stream
graph can operate more efficiently if the rates of streams are
coordinated, so that, one filter may output a data item to a
stream “just- in-time” for consumption by the next filter on the
receiving end of the stream. Using this approach, the authors
reported an average CPU energy saving of 28%.

Challenges: Existing refactoring tools cannot be reused
to support this new refactoring, since most of the exist-
ing refactoring implementations encompass only control-flow-
centric programming models (such as Java and C) while the
stream programming is graph-centric model, implemented by
the StreamIt programming language. Transformation from a
control-flow-centric programming model to streams would
require the refactoring to perform a great set of transforma-
tions, which can in turn harm its applicability, due its time-
consuming nature.

IV. RELATED WORK

In this section we describe the studies overlapping with the
scope of our work.

The most established energy management approaches are
focused on the hardware level (e.g., [16]) and the OS level
(e.g., [53]). Tiwari et al. [47] correlated energy consumption
with CPU instructions. Vijaykrishnan et al. [51] performed an
early study on the energy consumption of the JVM. Within
the programming language community, it is an active area of
research to design energy-aware programming languages, with
examples such as EnerJ [44], Energy Types [8], and LAB [19].
Existing research that dealt with the trade-off of comparing



individual characteristics of an application and energy con-
sumption has covered a wide spectrum of applications. These
characteristics vary from data structures [30], VM services [5],
cloud offloading [21], and code obfuscation [43].

The mobile arena is also an important topic of research.
Hindle [14] investigated the relationship between software
changes and power consumption on Mozilla Firefox. The
author observed that intentional performance optimization
introduced a steady reduction in power consumption. More
recently, Hindle et al. [15] proposed an energy consumption
framework to be used in mobile devices. The authors suggest
that this framework is more accurate than real meters in
measuring energy consumption of smartphones because it does
not take the battery usage in consideration. Pathak et al. [37]
presented an in-depth investigation on the root causes for
energy consumption problems in mobile applications. Like the
study of Pinto et al. [40], they also observed that advertisement
plays an important role, consuming up to 75% of energy
consumption in free apps.

The energy consumption of concurrent programs is gaining
attention over the years. Park et al. [36] developed sev-
eral synchronization-aware runtime techniques to balance the
trade-off between energy and performance. Gautham et al. [11]
studied the relative energy efficiency of synchronization im-
plementation techniques (such as spin locks and transactions).
A recent short paper [29] called for energy management
based on different synchronization patterns. Trefethen and
Thiyagalingam [48] surveyed energy-aware software, includ-
ing multi-threaded programs with different workload settings.
Bartenstein and Liu [3] designed a data-centric approach to
improve energy efficiency for multi-threaded stream programs.
Ribic and Liu [42] designed an algorithm to improve the
energy efficiency of the work-stealing runtime of Intel Cilk
Plus by managing the relative speed of threads.

V. THREATS TO VALIDITY

First, in presenting our analysis on opportunities and chal-
lenges for refactoring for energy efficiency, we attempted to
select and cite relevant papers published on premier software
engineering venues. However, the conducted survey is not
exhaustive; we make no pretense of having selected and
cited all possible energy consumption related studies. We
leave this task to surveys and systematic studies. Instead, the
presented work highlights refactoring opportunities to improve
existing systems. Also, by focusing only on premiere software
engineering conferences, and not on workshops, we believe we
can select more mature and well-established research. Second,
even though we have searched in 8 software engineering con-
ferences, this paper does not mean to make general conclusions
about the entire software energy consumption community.
Rather, results should only be viewed in the context of the
papers in those 10 years of chosen conferences. Nevertheless,
we hope that the approach we followed helped this paper
better reflect the views of researchers in the software energy
consumption community.

VI. CONCLUSIONS

Our goal in this paper was to present and discuss some
of the opportunities to make refactoring green, allowing pro-
grammers to write energy-efficient software. To do that, we
have analyzed recent software energy consumption literature.
For each one of the selected papers, we describe how the
main contribution can be reincarnated in a refactoring engine,
and what are the challenges to do so. In a nutshell, Table II
summarizes the main opportunities.

TABLE II
SUMMARY OF IDENTIFIED REFACTORING OPPORTUNITIES.

# Opportunity Supported By
1 User Interfaces [27]
2 CPU Offloading [21]
3 HTTP Requests [24], [34], [12]
4 I/O Operations [2], [24]
5 Continuously Running App [33]
6 Excessive Copy Chains [41]
7 Embrace Parallelism [18], [41]
8 GPU Programming [45]
9 Approximate programming [6]
10 Energy Types [8]
11 Stream Programming [3]

For future work, we plan to effectively implement some of
the aforementioned opportunities in a refactoring engine. In
order to evaluate the effectiveness of the refactoring tool, we
also plan to conduct controlled experiments with practitioners,
so that we can observe if the refactoring tool is not only
efficient in improving the energy consumption, but also usable.
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