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ABSTRACT 26 

The aim of this study is comparing the accuracies of machine learning algorithms to 27 

classify data concerning healthy subjects and patients with Parkinson’s Disease (PD), 28 

towards different time window lengths and a number of features. Thirty-two healthy 29 

subjects and eighteen patients with PD took part on this study. The study obtained 30 

inertial recordings by using an accelerometer and a gyroscope assessing both hands of 31 

the subjects during hand resting state. We extracted time and temporal frequency 32 

domain features to feed seven machine learning algorithms: k-nearest-neighbors (kNN); 33 

logistic regression; support vector classifier (SVC); linear discriminant analysis; random 34 

forest; decision tree; and, gaussian Naïve Bayes. The accuracy of the classifiers was 35 

compared using different numbers of extracted features (i.e. 272, 190, 136, 82, and 27) 36 

from different time window lengths (i.e. 1, 5, 10, and 15 seconds). The inertial 37 

recordings were characterized by oscillatory waveforms that, especially in patients with 38 

PD, peaked in a frequency range between 3–8 Hz. Outcomes showed that the most 39 

important features were the mean frequency, linear prediction coefficients, power ratio, 40 

power density skew, and kurtosis. We observed that accuracies calculated in the testing 41 

phase were higher than in the training phase. Comparing the testing accuracies, we 42 

found significant interactions among time window length and the type of classifier (p < 43 

0.05). The study found significant effects on estimated accuracies, according to their 44 

type of algorithm, time window length, and their interaction. kNN presented the highest 45 

accuracy, while SVC showed the worst results. kNN feeding by features extracted from 46 

1 and 5 seconds were the combination with more frequently highest accuracies. 47 

Classification using few features led to similar decision of the algorithms. Moreover, 48 

performance increased significantly according to the number of features used, reaching 49 
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a plateau around 136. Finally, the results of this study suggested that kNN was the best 50 

algorithm to classify hand resting tremor in patients with PD. 51 

 52 

Keywords: Parkinson’s disease, Inertial sensors, accelerometer, gyroscope, hand 53 

resting tremor, machine learning. 54 

  55 
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INTRODUCTION 56 

More than 6.1 million people worldwide are affected by Parkinson’s disease (PD) 57 

(GBD, 2018) – this number is expected to rise with the increasing of the population life 58 

expectancy (Vanneveich et al., 2018). PD has very heterogeneous clinical features, but 59 

tremor at rest, akinesia, and rigidity are considered the clinical cardinal motor signatures 60 

of this disease (Poewe et al., 2017; Kalia & Lang, 2015). It is hard to diagnose PD, both 61 

in its early stages and during its progression. Its diagnosis is usually carried out by 62 

clinical observation or by using scales such as the Unified Parkinson’s Disease Rating 63 

Scale (UPDRS) or the Hoehn and Yahr scale (H-Y) (Holden et al., 2018; Rizek et al., 64 

2016; Hoehn & Yahr, 1967). 65 

Literature has proposed alternative ways to quantify PD symptoms in order to assist its 66 

diagnosis and progression (Jilbab et al., 2017). Inertial measures of the hand resting 67 

tremor associated to machine learning algorithms have been extensively investigated to 68 

distinct data from healthy people and patients with PD (Jeon et al., 2017a, 2017b), to 69 

quantify the progression of the disease (Pedrosa et al., 2018), and to evaluate the effect 70 

of therapeutics on hands’ tremor (LeMoyne et al., 2019). 71 

Although many investigations have evaluated the machine learning classifier 72 

performance to precisely categorize the inertial measurements from patients with PD, 73 

there are few methodological studies concerning the influence of the technical 74 

parameters of this kind of approach. Parameters like the time interval of the inertial 75 

sensor readings, type of features extracted from the inertial sensor readings, the number 76 

of features used, the type of machine learning classifier, and the type of inertial sensor 77 

used have potential to increase or decrease the accuracy of the algorithm (Ramdhani et 78 

al., 2018; Nurwulan & Jiang, 2020; Jeon et al., 2017; Wang et al., 2018; Rovini et al., 79 

2017). Table 1 lists examples of studies that associated inertial measurements with 80 
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machine learning approaches and their methodological choices. It displays a large 81 

variability of methodological settings and few explanations justifying such choices. 82 

Several investigations have used a number of machine learning algorithms to classify 83 

and/or to quantify the resting hand tremor of patients with PD, obtaining high accuracy 84 

levels. (Kostikis et al. 2015: 78%-94%; Jeon et al., 2017: 80%-85%; Pedrosa et al., 85 

2018: 92.8%). There is no consensus about what machine learning algorithms are 86 

preferable to classify features of inertial readings or what are the optimal conditions to 87 

use any of the algorithms. 88 

Several studies have segmented inertial recordings in different window size durations to 89 

extract dozens or hundreds of features that fed a machine learning algorithm (Jeon et al., 90 

2017). Short-term inertial readings could be good to get a fast evaluation, but they lead 91 

to high false positive detection. On the other hand, long-term recordings may potentially 92 

prolong the recording process, adding redundant information (Nurwulan & Jiang, 2020). 93 

In the same way, using a few features may not be enough to bring clear information 94 

about the differences among patients with PD; and an excessive number of features may 95 

overload the computing process. It is important to select the best set of features in order 96 

to potentialize algorithm classification and to avoid collinearity among data. 97 

The present study aimed to compare the performance of machine learning algorithms to 98 

classify recordings of inertial sensors as healthy people or patients with PD considering 99 

different numbers of features extracted from a variety of window length duration of 100 

inertial recordings. Those results may contribute in the decision making of the best 101 

parameter for the classification of inertial sensor measures analyzed by machine 102 

learning algorithms.103 
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Table 1. References that used inertial sensors features to feed machine learning to evaluate the hand tremor of PD patients. 104 

 105 

Reference Hand activity Sensor (AR) 
Recording 

duration 
Methods of classification Accuracy 

Alam et al. (2016) Resting tremor Acc and gyros (200 Hz) 25-30 s Support vector machine 59%-88.9% 

LeMoyne et al. (2015) Kinetic tremor Acc (100 Hz) 5 s Support vector machine 100% 

Butt et al. (2017) Kinetic tremor Gyros (100 Hz) 10 s 
Support vector machine, logistic 

regression, neural network classifier 
76.2%-83.1% 

Stamatakis et al. (2013) Finger tapping Acc (167 Hz) Free Ordinal logistic regression 87.2%-96.5% 

Jeon et al. (2017) Resting tremor Acc (125 Hz) 10 s 
SVM, decision tree, random forest, 

discriminant analysis 
80.9-85.6 
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MATERIALS AND METHODS 106 

Ethical considerations 107 

All individual participants included in this study gave us their informed and written 108 

consent. Every procedure carried out in the present study was in accordance with the 109 

ethical standards of the Ethics Committee in Research with Humans from the University 110 

Hospital João de Barros Barreto (report #1.338.241) and with the 1964 Helsinki 111 

Declaration and its later amendments or comparable ethical standards. 112 

 113 

Subjects 114 

Our sample comprised of fifty right-handed participants grouped into healthy control 115 

participants (n = 32 individuals, 16 females and 16 males) and participants with PD (n = 116 

18 individuals, 8 females and 10 males). Participants’ handedness was established 117 

according to the hand they use to handwrite. Healthy participants ranged from 41 to 79 118 

years (mean ± standard deviation: 64.3±11.1 years), while patients with PD ranged from 119 

48 to 73 years (mean ± standard deviation: 60.2±8.4 years). Control participants were 120 

recruited by convenience. They had no history of neurological or systemic diseases, no 121 

self-reported tremor of the hands nor difficulties in carrying out daily activities. All 122 

patients with PD were diagnosed by a neurologist in the Neurology Department of the 123 

University Hospital João de Barros Barreto, Brazil, according to the clinical diagnostic 124 

criteria of the UK Parkinson’s Disease Society Brain Bank (Hughes et al., 1992). For 125 

each patient, the severity of PD was scored by using the Hoehn and Yahr (H-Y) scale. 126 

All patients with PD had disease diagnosed within the less 6 years; except by one 127 

subject (H-Y 3), all other patients were staged as functionally independent (H-Y 1 or 2). 128 

All patients were using levodopa or dopamine agonist therapy for over a year. 129 

 130 
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Inertial measurement unit recordings 131 

We used a wearable device MetaMotionC (mbientlab, San Francisco, USA), with on-132 

board sensors, such as a triple-axis gyroscope and an accelerometer (16 bits, ± 2000°/s, 133 

± 16 g). Researchers positioned a wearable device over each patient’s third metacarpal 134 

bone at their midway between the carpal and the digital extremities of their metacarpal 135 

(Figure 1) — with their forearm supported on a table, and their hand relaxed over its 136 

edge. Researchers recorded the patients in resting state with the acquisition rate at 100 137 

Hz and 16-bit analog to digital conversion resolution. An Android app (MetaBase, 138 

mbientlab, USA) controlled the sensors via Bluetooth. Bluetooth also transmitted their 139 

signals to an ordinary computer. The study delivered 2-minute recordings. One trial was 140 

carried out for each one of the hands of all participants.  141 

---------------------------------------------------------------------------------------------------------- 142 

FIGURE 1. Insert here 143 

---------------------------------------------------------------------------------------------------------- 144 

 145 

Data analysis 146 

To carry out data analysis, researchers programmed Python scripts (Python v3.7.4) by 147 

using SciPy (version 1.3.1), NumPy (version 1.17.2), PyWavelets (version 1.0.3), and 148 

LibROSA (version 0.7.2) tools. SciPy is a Python-based ecosystem of open-source 149 

software for mathematics, science, and engineering; NumPy is a library for the Python 150 

programming used to operate on arrays; LibROSA is a Python package that provides the 151 

building blocks necessary to create music information retrieval systems; and 152 

PyWavelets is an open source wavelet that transforms software for Python.  153 

Our sequence of analysis consisted of: 1) inertial recordings; 2) raw data filtering; 3) 154 

segmentation of the time series in different sets of waveform lengths; 4) data 155 
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normalization; 5) extraction of features; 6) selection of the best features; 7-8) 156 

performing machine learning algorithms with training and test phases; and, 9) 157 

measuring machine learning performance. Figure 2 illustrates data analysis summary. 158 

---------------------------------------------------------------------------------------------------------- 159 

FIGURE 2. Insert here 160 

---------------------------------------------------------------------------------------------------------- 161 

 162 

Raw Data Filtering 163 

We computed a magnitude vector from each sensor dimension (x, y, and z) using 164 

Equation 1, which is less sensitive to orientation changes (Janidarmian et al., 2017). The 165 

recordings were filtered by a fourth-order bandpass digital Butterworth filter between 1 166 

and 30 Hz to exclude low and high frequency artifacts. 167 

 168 

𝑣 =  √𝑥2 + 𝑦2 + 𝑧2 (Equation 1), 169 

 170 

where 𝑣 is the magnitude vector, 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 represented the 3-D readings of the inertial 171 

sensor.  172 

 173 

After this, we applied the scipy.signal.detrend function using its linear list squared fit to 174 

detrend the inertial readings. 175 

 176 

Segmentation of the time series 177 

We segmented the inertial recordings in fixed sized windows, with no inter-window 178 

gaps and non-overlapping between adjacent windows. We also segmented these time 179 

series in sets of waveforms with 1-second (s), 5-s, 10-s, and 15-s window sizes. 180 
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 181 

Extraction of features 182 

We extracted features from time and temporal domains for each sensor dimension. 183 

Table 2 presents a list of features extracted from inertial data, as well as Python main 184 

codes related to them. 185 

 186 

Table 2. Features extracted from the inertial readings. 187 

Features Python code 

Time domain 

Range range = values.max() - values.min() 

Standard deviation std = values.std() 

Root mean square rms = numpy.sqrt(numpy.mean(values**2)) 

Skewness sk = scipy.stats.skew(values) 

Kurtosis kt = scipy.stats.kurtosis(values) 

Linear prediction coefficients lp_coefs = librosa.lpc(values, 3) 

Wavelet transform detail 

coefficients (cD) 

_, cD = pywt.dwt(values, 'db3') 

cD variance variance = numpy.var(cD) 

cD entropy def approximate_entropy(U, m=2, r=3): 
    U = numpy.array(U) 
    N = U.shape[0] 
 
def phi(m): 
        z = N - m + 1.0 
        x = numpy.array([U[i:i+m] \ 
            for i in range(int(z))]) 
        x_ = numpy.repeat(x[:, \   
            numpy.newaxis], 1, axis=2) 
        C = numpy.sum(numpy .absolute(x - \ 

In review



11 
 

            x_).max(axis=2) <= r, \ 
            axis=0) / z 
        return numpy.log(C).sum() / z 
 
    entropy = abs(phi(m + 1) - phi(m)) 

Third order cumulant third_order_cum = 
scipy.stats.moment(values, moment=3) 

Temporal frequency (tf) domain 

Peak of energy p_tf = frequency_values.max() 

Frequency at the peak energy xf = numpy.linspace(0, af/2, 
frequency_values.size) 

tf_p = xf[numpy.argmax(frequency_values)] 

 

Skewness_tf  sk_tf = scipy.stats.skew(frequency_values) 

Kurtosis_tf kt_tf = 
scipy.stats.kurtosis(frequency_values) 

Mean frequency def mean_frequency(frequency_values): 

    xf = numpy.linspace(0, af/2, 
frequency_values.size) 

    xf = xf[xf >= 1] 

     

    total_area = 
numpy.trapz(frequency_values, xf) 

    for i, x in enumerate(xf): 

        partial_area = 
numpy.trapz(frequency_values[:i], xf[:i]) 

        if partial_area > total_area / 2: 

            mean_freq = xf[i-1] 

Power ratio (1-6Hz/6-12 Hz) xf = numpy.linspace(0, af/2, 
frequency_values.size) 

num = frequency_values[(xf >= 1) & (xf <= 
6)] 

den = frequency_values[(xf >= 6) & (xf <= 
12)] 

power_ratio = num.mean() / den.mean() 
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Note. values = inertial measures in the time domain vector; frequency_values = inertial 188 

measures in the temporal frequency domain vector; af = the acquisition frequency; and, 189 

xf = frequency values vector. 190 

 191 

The study extracted 272 features from each one of our participants, considering data 192 

extracted: (a) from each one of their hands (dominant and non-dominant); (b) from each 193 

inertial sensor parameter (accelerometer and gyroscope); and , (c) from the four 194 

dimensions of each sensor (x, y, z, and magnitude). 195 

 196 

Data normalization 197 

The study applied sklearn.preprocessing package and its StandardScaler function to 198 

standardize features by removing their mean and scaling them to unit variance, as 199 

shown in Equation 2.  200 

𝑧_𝑠𝑐𝑜𝑟𝑒 =  (𝑥−𝜇)
𝑠

 (Equation 2) 201 

 202 

Selection of features 203 

The study used algorithm SelectKBest to select the k most important features based in a 204 

score which was the ANOVA F-value. The chosen selection of the most important 205 

features to feed the machine learning algorithms in this study where: 272 features 206 

(100%), 190 features (70%), 136 features (50%), 82 features (30%), and 27 features 207 

(10%). 208 

 209 

Splitting data 210 
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To validate the predictive models, we applied the tenfold cross-validation method by 211 

using the Scikit-learn library (version 0.21.3) and ShuffleSplit function. The study 212 

randomly split data into 80% for model training and 20% for model testing. 213 

 214 

Machine learning algorithms 215 

We applied seven types of machine learning algorithms to classify the data from both 216 

healthy and PD groups. The algorithms were: k-nearest-neighbor (kNN); support vector 217 

classifier (SVC); logistic regression (LR); linear discriminant analysis (LDA); random 218 

forest (RF); decision tree (DT); and Gaussian Naïve Bayes (GNB). 219 

The next sentences describe the Python functions used to proceed the machine learning 220 

algorithms, as well as the parameters that differed from default values. These 221 

parameters were changed to protect the model from overfitting.  222 

 223 

(a) k-Nearest-Neighbor (kNN): the function sklearn.neighbors.KNeighborsClassifier 224 

was applied to proceed an kNN algorithm considering the Minkowski distance metrics, 225 

k-value ranging from 5 to 10. We applied a grid search using the GridSearchCV 226 

function to find which k-nearest-neighbor would deliver the best accuracy, then chosen 227 

as the best k-value.  228 

(b) Support Vector Classifier (SVC): were applied an SVC algorithm (sklearn.svm.SVC 229 

function) with radial basis function kernel with gamma parameter equal to 1 and the C 230 

penalty parameter equal to 10.  231 

(c) Logistic Regression (LR): a binary logistic regression algorithm 232 

sklearn.linear_model.LogisticRegression function was used considering the parameter 233 

penalty equal to ‘l1’, and solver equal to ‘liblinear’.  234 
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(d) Linear Discriminant Analysis (LDA): the study applied the function 235 

sklearn.discriminant_analysis.LinearDiscriminantAnalysis to proceed the LDA 236 

algorithm considering the parameter solver equal to ‘svd’, and store_covariance as true.  237 

(e) Random Forest (RF): we used the function 238 

sklearn.ensemble.RandomForestClassifier to implement random forest algorithm 239 

considering the parameter ‘criterion’ the value ‘gini impurity’ as a measure of the split 240 

quality, the parameters n_estimators equal to 50, and max_depth equal to 6.  241 

(f) Decision Tree (DT): similarly to the random forest classifiers, the tree algorithm was 242 

proceed using the sklearn.tree.DecisionTreeClassifier function considering ‘gini 243 

impurity’ to the parameter ‘criterion’, and the parameters n_estimators were set to 50, 244 

and max_depth equal to 6.  245 

(g) Gaussian Naïve Bayes (GNB): the function to proceed a Gaussian Naïve Bayes 246 

algorithm was the sklearn.naive_bayes.GaussianNB.  247 

 248 

Measuring machine learning performances 249 

Equation 3 calculated accuracy in order to measure the success levels of the classifiers, 250 

as follows:  251 

 252 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃+𝑇𝑁)
(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁) (Equation 3) 253 

 254 

where TP is the true positive value; TN is the true negative value; FP is the false 255 

positive value; and, FN is the false negative value. 256 

 257 

Statistics 258 
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The study applied the unpaired t test with Welch’s correction to compare the accuracies 259 

obtained from training and testing phases for each classifier using features extracted 260 

from different time window lengths. For each percentage of features feeding the 261 

algorithms, we conducted a two-way ANOVA on the influence of the classifier type and 262 

the time window length of the accuracy of such classifier. The classifier type includes 263 

seven levels (SVC, GNB, RF, kNN, LR, LDA, and DT) and the time window length 264 

consisted of 5 levels (1 s, 5 s, 10 s, and 15 s). As the two-way ANOVA test was 265 

significant, we computed the Tukey HSD for performing multiple pairwise-comparison 266 

between mean accuracies of both groups. We counted the number of times in which an 267 

algorithm presented a better performance when compared to the others (here named 268 

victory), by means of significant multiple comparisons at the different time window 269 

lengths and number of features. Thus, we used the chi-square goodness of fit (equal 270 

proportions) to compare the observed distribution of significant comparisons to the 271 

expected distribution considering the number of algorithms or of time window length. 272 

All the statistical tests were carried out by using R software (version 3.6) and 273 

considering the level of significance of 5%. 274 

 275 

RESULTS 276 

Selection of recordings and features 277 

Figure 3 shows examples of the accelerometric and gyroscopic recordings for the 5-278 

second time windows as a function of time and temporal frequency from representative 279 

subjects from both groups. The results for the 5-second time windows were qualitatively 280 

similar to the other time windows the study investigated. We characterized the inertial 281 

recordings by oscillatory waveforms that, especially in participants with PD, defined 282 

their peak in frequencies ranging between 3–8 Hz. 283 
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---------------------------------------------------------------------------------------------------------- 284 

FIGURE 3. Insert here 285 

---------------------------------------------------------------------------------------------------------- 286 

 287 

Regardless time window length, the most important features detected were mean 288 

frequency, linear prediction coefficients, power ratio, and the power density skew and 289 

kurtosis. Figure 4 shows the 15 most important features selected from extracted data 290 

concerning time windows of 15 seconds (Figure 4A), 10 seconds (Figure 4B), 5 seconds 291 

(Figure 4C), and 1 second (Figure 4D).  292 

---------------------------------------------------------------------------------------------------------- 293 

FIGURE 4. Insert here 294 

---------------------------------------------------------------------------------------------------------- 295 

 296 

Machine learning classifiers 297 

Comparison between training and testing accuracies 298 

Most of the comparisons had significant differences between training and testing 299 

phases. Whenever statistical significance (p < 0.05) was reached, testing accuracy was 300 

higher than training accuracy – except in two comparisons (random forest and kNN 301 

algorithms) – when using 30% of the features in the 1-second time window. 302 

Supplementary files 1, 2, 3, 4, and 5 present tables with the training and testing phases 303 

of the machine learning. 304 

The comparisons with no statistical significance were in time windows of:  305 

(i) 1 s: random forest algorithm using all features and 70% of them, GNB using 50% 306 

and 10%;  307 
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(ii) 5 s: GNB with all features, 70%, and 50% of them, kNN and LR using 30% of the 308 

features;  309 

(iii) 10 s: GNB using 30% and 10% of the features;  310 

(iv) 15 s: GNB using all features, 70%, 50%, and 10% of them, SVC using all features, 311 

70%, and 50% of them, LDA using all features and 70% of them, LR using 50% of the 312 

features, and RF using 30% of the features.  313 

Figure 5 illustrates the comparisons between the accuracies obtained by the different 314 

classifiers using extracted features in different time windows considering 70%, 50%, 315 

30%, and 10% of the features, respectively.  316 

---------------------------------------------------------------------------------------------------------- 317 

FIGURE 5. Insert here 318 

---------------------------------------------------------------------------------------------------------- 319 

 320 

Comparing test accuracies obtained from the different supervised machine learning 321 

algorithms 322 

In general, the effects of the machine learning phases on the accuracies were statistically 323 

significant. The main effect for classifier type yielded an F ratio of F(6, 252) = 639.14, 324 

p < 0.0001 for all the features; F(6, 252) = 727.74, p < 0.0001 for 70% of the features; 325 

F(6, 252) = 478.15, p < 0.0001 for 50% of the features; F(6, 252) = 171.41, p < 0.0001 326 

for 30% of the features; and F(6, 252) = 36.8, p < 0.0001 for 10% of the features. The 327 

proportion of victories in the multiple comparisons significantly differed by algorithm 328 

for all numbers of features conditions. kNN was the algorithm that more frequently 329 

delivered high accuracy when compared to the others algorithms. SVC delivered the 330 

lowest frequency of victories among all tested algorithms. Table 3 shows the number of 331 
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“victories” of each algorithm in the significant multiple comparisons for each number of 332 

feature condition. 333 

 334 

Table 3. Number of victories of each classifier in the significant multiple comparisons 335 

for each number of feature condition. 336 

 Number of features 

Algorithm 100% 70% 50% 30% 10% 

SVC 5 5 3 0 4 

GNB 12 16 16 13 2 

RF 40 40 39 31 27 

kNN 54 58 61 50 50 

LR 53 48 41 31 6 

LDA 34 38 35 27 3 

DT 36 37 34 28 5 

Number of significant multiple 

comparisons 
234 242 229 180 97 

X2 63.53 57.72 63.50 57.38 142.51 

P <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

 337 

The main effect for time window length yielded an F ratio of F(3, 252) = 51.7, p < 338 

0.0001 for all the features; F(3, 252) = 47.4, p < 0.0001 for 70% of the features; F(3, 339 

252) = 25.5, p < 0.0001 for 50% of the features; F(3, 252) = 5.5, p < 0.0001 for 30% of 340 

the features; and F(3, 252) = 14.8, p < 0.0001 for 10% of the features. The proportion of 341 

victories in the multiple comparisons was similar by time window length for all 342 

numbers of feature conditions, except for 10% of the features. Table 4 displays the 343 
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number of “victories” from time window length in the significant multiple comparisons 344 

for each number of feature condition. 345 

 346 

Table 4. Number of victories per time window length in the significant multiple 347 

comparisons for each number of feature condition. 348 

 Number of features 

Time window length 100% 70% 50% 30% 10% 

1 s 58 61 54 39 12 

5 s 64 68 66 52 35 

10 s 60 62 60 47 27 

15 s 52 51 49 42 23 

Number of significant multiple 

comparisons 
234 242 229 180 97 

X2 1.28 2.46 2.84 2.17 11.33 

P 0.73 0.48 0.51 0.53 <0.01 

 349 

The interaction effect was significant for all numbers of features conditions (for all the 350 

features: F(18,252) = 19.04, p < 0.001; for 70% of the features: F(18,252) = 15.23, p < 351 

0.001; For 50% of the features: F(18,252) = 7.61, p < 0.001; and for 10% of the 352 

features: F(18,252) = 2.959, p < 0.001;), except for 30% of the features condition that 353 

yielded in a F ratio of F(18,252) = 2.959, and p = 0.29. 354 

 355 

Figure 6A-E shows tile plots representing the statistical significance of the post-hoc 356 

multiple comparisons between the testing accuracies from any two classifiers. White 357 

tiles represent comparisons with significant differences, while dark tiles represent non-358 
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significant differences. The red line indicates the orientation of the significant 359 

difference. Horizontal lines represent higher accuracies for the classifiers in the row 360 

when compared to the classifiers in the column, while vertical lines represent the 361 

opposite situation. We observed that the number of significant differences between two 362 

classifiers (number of white tiles) was dependent of the number of features. For a low 363 

number of features (10% of the features we extracted, 27 features) the number of 364 

significant differences between two classifiers was also low and increased linearly up to 365 

reach a plateau level of 70% of the features (136 features). The combinations between 366 

classifier and time window length with highest accuracies were kNN and time windows 367 

of 1s and 5s. 368 

---------------------------------------------------------------------------------------------------------- 369 

FIGURE 6. Insert here 370 

---------------------------------------------------------------------------------------------------------- 371 

 372 

DISCUSSION 373 

This paper assessed the hand tremor in individuals with PD and healthy controls 374 

by using machine learning algorithms based on inertial sensor recordings. Our 375 

objectives were: i) identifying the best machine learning algorithms to classify hand 376 

tremor by using inertial data; ii) describing the best recording duration to be used by 377 

classification methods; iii) stablishing the number of features necessary to the best 378 

performance of the algorithms.  379 

Concerning these objectives, the results of this study showed that the kNN 380 

algorithm as the best classifier, followed by LR, and RF algorithms respectively. On the 381 

other hand, research pointed out that SVC and GNB delivered the worst performances 382 

among all classifiers. Also, some classifiers had better performances with short time 383 
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windows, while others needed long recordings to deliver more accurate performances. 384 

Our results also showed that the performance of the classifiers became more similar 385 

when using less features; and, with more features, differences between classifiers 386 

increased linearly until a maximum value (using around 136 features), reaching a 387 

plateau. Regardless the most important feature selected, the time window length was 388 

similar across tested conditions. Whereas, the more common features selected were 389 

mean frequency for both accelerometer and gyroscope sensors; linear prediction 390 

coefficients for the accelerometer; skewness, power ratio, and the power density 391 

skewness and kurtosis for the gyroscope.  392 

Many types of machine learning classifiers have been used to analyze PD tremor (Bind 393 

et al., 2015). We used 7 out of the most common algorithms used in the field. kNN was 394 

the best classifier across multiple comparisons, together with LR and RF algorithms, 395 

which had accuracy level above 90%.  396 

The kNN algorithm groups similar classes of data based in the value of k nearest 397 

neighbors. Low values of k increase the accuracy of the classifier in the training phase, 398 

but difficult the generalization of the model for a new data (Li & Zhang, 2011). The k 399 

was used between 5 and 10 to facilitate the generalization of the model during test 400 

phase. Previous investigations – such as Jeon et al. (2017) – have also found high 401 

accuracies using kNN algorithms. They assessed 85 PD patients to predict UPDRS 402 

results by using a wrist-watch-type wearable device for measuring tremors and found an 403 

accuracy level close to 84% for kNN and RF algorithms. Also, kNN algorithm delivered 404 

performance improvement as we decreased the number of features, while other 405 

algorithms delivered impaired outcomes. 406 

RF is a combination of multiple tree predictors that make decisions based in random 407 

vectors of features. The RF decision is the more common decision of the collection of 408 
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tree classifiers (Breiman, 2001). Previous studies have demonstrated the ability of RF 409 

models to detect freezing in the gait of patients with PD or the switching on and off 410 

state of deep brain stimulation in these patients (Kuhner et al., 2017; Tripoliti et al., 411 

2013). 412 

LR is a classification algorithm that uses a logistic sigmoid function to transform 413 

observations in two or more classes. LeMoyne et al. (2019) used LR algorithms to 414 

distinguish inertial readings associated with on and off modes from deep brain 415 

stimulation in PD patients, getting an accuracy level of 95%. 416 

Both GNB and SVC with the worst outcomes. When compared with other algorithms, 417 

the GNB classifier delivered lower (Susi et al., 2011) and higher (Bazgir et al., 2018) 418 

accuracies to detect human motion. GNB is an algorithm that evaluates the probability 419 

of events within different classes (Bazgir et al., 2018; Theodoridis et al., 2010). SVC 420 

aims to find an optimal separation hyperplane in order to minimize misclassifications 421 

(Vapnik, 1979). SVC has been widely used to detect tremor in PD patients. The 422 

accuracy level of its classifiers has ranged between 80% and 90% to quantify PD tremor 423 

(Jeon et al. 2017; Alam et al., 2016). We used a radial compared to the best SVC used 424 

by Jeon et al. (2017) finding similar results.  425 

It is important to highlight that directly comparing the performance of the classifiers in 426 

different studies must be careful. Each study implements different parameters in the 427 

algorithms, which are not always fully described. Furthermore, the number and type of 428 

features may influence the classifier accuracies. The present study observed that few 429 

features make classifiers’ decisions more similar, while an increased number of features 430 

enable the classifiers’ performance to be distinguished, reaching a plateau around 176 431 

features. One must find a trade-off between the number of features and the cost of 432 
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computational processing for each algorithm especially when trying to implement such 433 

method with wearable or mobile devices. 434 

The use of machine learning algorithms to recognize patterns of human motion requires 435 

the segmentation of motion recording time series. Previous studies have segmented time 436 

series in different lengths for pattern recognition tasks (Bussman et al., 2001; Wang et 437 

al., 2012; Dehghani et al., 2019). Although, short lengths accelerate the duration of the 438 

recordings, their random nature can present negative influence on the classifiers’ 439 

performance (Smith et al., 2011). Short duration recordings in the scale of hundred 440 

milliseconds have been successfully used to recognize human motion (Wang et al., 441 

2012b). At the same time, long-term recordings also returned high accuracy when 442 

detecting PD tremor as we can observe in Table 1.  443 

This study evaluated the accuracy of classifiers by using different time window lengths. 444 

We observed that recordings lasting 5s or 1s delivered the highest accuracy levels. The 445 

study also noticed some interaction between the window time length and classifiers, 446 

indicating that some classifiers were better to analyze short recordings (i.e. kNN 447 

algorithm), while others showed higher accuracies when using long recordings (i.e. 448 

GNB). There is no rule concerning the length of inertial readings for the predictive 449 

modeling problem. Banos et al. (2014) investigated the effects of the windowing 450 

procedures on the activity recognition process using inertial data. They observed that 451 

intervals between 1 and 2 seconds offered the best trade-off between recognition speed 452 

and accuracy.  453 

The more common features extracted from inertial readings express amplitude of 454 

oscillatory series, their spectral content, regularity, and coherence (Twomey et al., 2018; 455 

Meigal et al., 2012). The present study observed that mean frequency for both 456 

accelerometer and gyroscope sensors, linear prediction coefficients for the 457 
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accelerometer, and skew power ratio, and the power density skew and kurtosis for the 458 

gyroscope frequently figure among the fifteen top features. Frequency domain features 459 

have been successfully employed in the machine learning algorithms by other 460 

researchers (Bazgir et al., 2018; Pedrosa et al., 2018). 461 

We based our approach exclusively on accelerometer and gyroscope sensors, though 462 

other sensors are reported in the literature to quantify PD hand tremor using machine 463 

learning algorithms. For example, Lonini et al. (2018) used the MC10 BioStampRC 464 

sensor, a sensor tape that records electromyographic signals to accelerometers and 465 

gyroscopes in 6 body positions. Even considering that additional sensors can contribute 466 

to increase the accuracy of a classifier, there is a high cost in its implementation that can 467 

reduce the applicability of the proposal. Inertial sensors are inexpensive instruments that 468 

are available in a wide variety of wearable equipment.  469 

This study has some potential limitations that deserve further comments. To date, 470 

research on this topic has been exploratory. There are no guidelines regarding the use of 471 

machine learning approach to quantify hand tremor in PD patients, as well as no 472 

established parameters for the choice of inertial sensors. A larger sample size and 473 

longitudinal follow-up could reinforce the present interpretations.  474 

 475 

CONCLUSION 476 

The present study suggested kNN using hundreds of features extracted from short-term 477 

inertial recordings as the best settings for machine learning configuration to classify 478 

hand tremor in PD patients. Our results can be used to assist the diagnosis and follow up 479 

of PD patients. We consider that our results are robust, because (i) of the high accuracy 480 

level obtained with the classifiers, (ii) the study could separate patients in the early stage 481 

of the PD (low H-Y score) from healthy people. 482 
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FIGURE LEGENDS 637 

 638 

FIGURE 1. IMU Positioning in the hand of the participant. (A) Lateral view. (B) 639 

Frontal view. The patient was instructed to keep the hand in rest for 120 seconds, while 640 

the experimenter controlled the recording using a mobile app.  641 

 642 

FIGURE 2. Flow chart of the data analysis steps. 643 

 644 

FIGURE 3. Accelerometric and gyroscopic recordings as a function of the time (upper 645 

rows) and temporal frequency (lower row) from representative participants of the 646 

control and PD groups, using the time window of 5 s. Recordings were carried out on 647 

the non-dominant and dominant hands (red and green lines, respectively). 648 

 649 

FIGURE 4. Most important features extracted from recordings lasting 1 s (A), 5 s (B), 650 

10 s (C), and 15 s (D). 651 

 652 

FIGURE 5. Comparison classifiers’ performance in the training (solid bars) and testing 653 

(empty bars) phase according the number of features and time window length. 654 

 655 

FIGURE 6. Comparison of the classifier’s performance in the testing phase when using 656 

all the features (A), 70% (B), 50% (C), 30% (D), and 10% (E) of the features. White 657 

squares represent the significant difference between the classifiers on the respective row 658 

and column, while black squares represent non significance for the comparison. The line 659 

in the white squares represent the direction of the difference, horizontal lines indicates 660 

that the classifier on the row had higher accuracy than the classifier on the column, and 661 
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vertical lines represent the opposite. (F) Number of significant differences between two 662 

classifiers as a function of number of features. 663 

 664 

In review



Figure 1.TIF

In review



Figure 2.TIF

In review



Figure 3.TIFF

In review



Figure 4.TIF

In review



Figure 5.TIF

In review



Figure 6.TIF

In review


