
Building a Collaborative Culture: A Grounded Theory of Well
Succeeded DevOps Adoption in Practice

Welder Pinheiro Luz
Brazilian Federal Court of Accounts

Brasília, Brazil
welder.luz@tcu.gov.br

Gustavo Pinto
Federal University of Pará

Belém, Pará
gpinto@ufpa.br

Rodrigo Bonifácio
University of Brasília

Brasília, Brazil
rbonifacio@cic.unb.br

ABSTRACT
Background. DevOps is a set of practices and cultural values that
aims to reduce the barriers between development and operations
teams. Due to its increasing interest and imprecise definitions, ex-
isting research works have tried to characterize DevOps—mainly
using a set of concepts and related practices.

Aims. Nevertheless, little is known about the practitioners practi-
tioners’ understanding about successful paths for DevOps adoption.
The lack of such understanding might hinder institutions to adopt
DevOps practices. Therefore, our goal here is to present a theory
about DevOps adoption, highlighting the main related concepts
that contribute to its adoption in industry.

Method. Our work builds upon Classic Grounded Theory. We
interviewed practitioners that contributed to DevOps adoption in
15 companies from different domains and across 5 countries. We
empirically evaluate our model through a case study, whose goal is
to increase the maturity level of DevOps adoption at the Brazilian
Federal Court of Accounts, a Brazilian Government institution.

Results. This paper presents a model to improve both the under-
standing and guidance of DevOps adoption. The model increments
the existing view of DevOps by explaining the role and motivation
of each category (and their relationships) in the DevOps adop-
tion process. We organize this model in terms of DevOps enabler
categories and DevOps outcome categories. We provide evidence
that collaboration is the core DevOps concern, contrasting with an
existing wisdom that implanting specific tools to automate build-
ing, deployment, and infrastructure provisioning and management is
enough to achieve DevOps.

Conclusions. Altogether, our results contribute to (a) generating
an adequate understanding of DevOps, from the perspective of
practitioners; and (b) assisting other institutions in the migration
path towards DevOps adoption.

ACM Reference Format:
Welder Pinheiro Luz, Gustavo Pinto, and Rodrigo Bonifácio. 2018. Building
a Collaborative Culture: A Grounded Theory of Well Succeeded DevOps
Adoption in Practice. In ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM) (ESEM ’18), October 11–12,
2018, Oulu, Finland. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3239235.3240299

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
ESEM ’18, October 11–12, 2018, Oulu, Finland
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5823-1/18/10. . . $15.00
https://doi.org/10.1145/3239235.3240299

1 INTRODUCTION
DevOps is a a set of practices and cultural values that has emerged
in the software development industry. Even before the existence
of the term — a mix of “development” and “operations” words [16]
— companies like Flickr [4] had already pointed out the need to
break the existing separation between the operations and software
development teams. Since then, the term has appeared without a
clear delimitation and gained strength and interest in companies
that perceived the benefits of applying agile practices in operation
tasks. DevOps claimed benefits include increased organizational IT
performance and productivity, cost reduction in software lifecycle,
improvement in operational efficacy and efficiency, better quality
of software products and greater business alignment between de-
velopment and operations teams [8, 20, 24]. However, the adoption
of DevOps is still a challenging task, because there is a plethora of
information, practices, and tools related to DevOps, but it is still un-
clear how one could leverage such rich, yet scattered, information
in an organized and structured way to properly adopt DevOps.

Existing research works have proposed a number of DevOps
characterizations, for instance, as a set of concepts with related
practices [1, 8, 10, 22, 23, 25]. Although some of these studies lever-
age qualitative approaches to gather practitioners’ perception (for
instance, conducting interviews with them), they focus on char-
acterizing DevOps, instead of providing recommendations to as-
sist on DevOps adoption. Consequently, our research problem
is that the obtained DevOps characterizations allow a comprehen-
sive understanding of the elements that constitute DevOps, but do
not provide detailed guidance to support newcomers interested in
adopting DevOps. As a consequence, many practical and timely
questions still remain open, for instance: (1) Is there any recom-
mended path to adopt DevOps? (2) Since DevOps is composed by
multiple elements [22], do these elements have the same relevance,
when adopting DevOps? (3) What is the role played by elements
such as measurement, sharing, and automation in a DevOps adop-
tion? To answer these questions, we need a holistic understanding
of the paths followed in successful DevOps adoptions.

In this paper, we present a model based on the perceptions of
practitioners from 15 companies across five countries that success-
fully adopted DevOps. Themodel was constructed based on a classic
Grounded Theory (GT) approach, and make clear that practitioners
interested in adopting DevOps should focus on building a collabo-
rative culture, which prevents common pitfalls related to focusing
on tooling or automation. We instantiated our model in the Brazil-
ian Federal Court of Accounts (hereafter TCU), a Brazilian Federal
Government institution. TCU was bogged down in implanting spe-
cific DevOps tools, repeating the same non-DevOps problems, with
conflicts between development and operations teams about how

https://doi.org/10.1145/3239235.3240299
https://doi.org/10.1145/3239235.3240299
https://doi.org/10.1145/3239235.3240299

ESEM ’18, October 11–12, 2018, Oulu, Finland W. Luz, G. Pinto, R. Bonifácio

to divide the responsibilities related to different facets in the inter-
section between software development and software provisioning.
When instantiated, our model helped TCU to change its focus to
improve the collaboration between teams, and to use the tooling
to support (rather than being the goal of) the entire process. The
main contributions of this paper are the following:
• A model, based on the classic Grounded Theory approach,
that could support practitioners interested in adopting Dev-
Ops, based on evidence acquired from their industry peers;
• An instantiation of this model in a real world, non-trivial
context. TCU is different from the typical tech companies that
have successfully reported the adoption of DevOps, though
the use of our model there have brought several benefits and
now DevOps practices have been disseminated at TCU.

2 RESEARCH METHOD
We used Grounded Theory (GT) as the research method. GT was
originally proposed by Glaser and Strauss [12]. As distinguishing
features, it has (1) the absence of clear research hypothesis upfront
and (2) limited exposure to the literature at the beginning of the
research. GT is a theory-development approach (the hypothesis
emerge as a result of a investigation), in contrast with more tradi-
tional theory-testing approaches [7]—e.g., those that use statistical
methods to either confirm or refute pre-established hypothesis.

We used GT as the research method due to three main reasons.
First, GT is a consolidated method in other areas of research -
notably medical sociology [6], nursing [5], education [17] and man-
agement [19]. GT is also being increasingly employed to study
software engineering topics [2, 13, 26]. Second, GT is considered
an adequate approach to answer research questions that aims to
characterize scenarios under a personal perspective of those en-
gaged in a discipline or activity [5], which is exactly the scenario
here: what are the successful adoption paths for DevOps? Finally,
GT allows researchers to build an independent and original under-
standing, which is adequate to collect empirical evidence directly
from the practice on industry without bias of previous research.
The evidence is only reintegrated back with the existing literature
after the step of theory construction.

Since the publication of the original version of GT [12], several
modifications and variations have been proposed to the method,
coming to exist at least seven different versions [9]. Here we chose
the classic version, mainly because we did not have a research ques-
tion at the beginning of our research, exactly as suggested in this
version. We actually started from an area of interest: successful Dev-
Ops adoption in industry. In addition, research works in software
engineering that leverage GT predominantly use this version [26].
We carried out our research using an existing guideline about how
to conduct a Grounded Theory [2] research. This guideline orga-
nizes a GT investigation in 3 steps: Open Coding Data Collection,
Selective Coding Data Analysis, and Theoretical Coding.

(A) Open Coding Data Collection. We started our research
by collecting and analyzing data from companies that claim
to have successfully adopted DevOps. To this end, we have
conducted a raw data analysis that searches for patterns
of incidents to indicate concepts, and then grouped these
concepts into categories [26].

(B) Selective Coding Data Analysis. In the second step, we
evolve the initial set of categories by comparing new inci-
dents with the previous ones. Here the goal is to identify
a “core category” [26]. The core category is responsible for
enabling the integration of the other categories and struc-
turing the results into a dense and consolidated grounded
theory [18]. The identification of the core category repre-
sents the end of the open-coding phase and the beginning of
the selective coding. In selective coding, we only considered
the specific variables that are directly related to the core
category, in order to enable the production of an harmonic
theory [7, 14]. Selective coding ends when we achieve a
theoretical saturation, which occurs when the last few par-
ticipants provided more evidence and examples but no new
concepts or categories [12].

(C) Theoretical Coding. After saturation, we built a theory
that explains the categories and the relationships between
the categories. Additionally, we reintegrated our theory with
the existing literature, which allowed us to compare our
proposal with other theories about DevOps. That is, using
a Grounded Theory approach, one should only conduct a
literature review in later stages of a research, in order to
avoid external influences to conceive a theory [3].

Throughout the process, we wrote memos capturing thoughts
and analytic processes; the memos support the emerging concepts,
categories, and their relationships [3].

Regarding data collection, we conducted semi-structured inter-
views with 15 practitioners of companies from Brazil, Ireland, Por-
tugal, Spain, and United States that contributed to DevOps adoption
processes in their companies. Participants were recruited by using
two approaches: (1) through direct contact in a DevOpsDays event
in Brazil and (2) through general calls for participation posted on
DevOps user groups, social networks, and local communities. In or-
der to achieve a heterogeneous perspective and increase the wealth
of information in the results, we consulted practitioners from a
variety of companies. Table 1 presents the characteristics of the
participants that accepted our invitation. To maintain anonymity,
in conformance with the human ethics guidelines, hereafter we
will refer to the participants as P1–P15 (first column). We assumed
a non-disclosure agreement with the investigated companies to use
the data only in the context of our study and, therefore, we can not
disclose them.

The interviews were conducted between April 2017 and April
2018 by means of Skype calls with minimum duration of 20 minutes,
maximum of 50 and an average of 31. Data collection and analysis
were iterative so the collected data helped to guide future interviews.
Questions evolved according to the progress of the research. We
started with five open-ended questions: (1) What motivated the
adoption of DevOps? (2) What does DevOps adoption mean in the
context of your company? (3) How was DevOps adopted in your
company? (4) What were the results of adopting DevOps? And (5)
what were the main difficulties?

As the analyzes were being carried out, new questions were
added to the script. These new questions were related to the con-
cepts and categories identified in previous interviews. Examples
of new questions include: (1) What is the relationship between

Building a Collaborative Culture: A GT of Well Succeeded DevOps Adoption in Practice ESEM ’18, October 11–12, 2018, Oulu, Finland

Table 1: Participant Profile. SXmeans software development
experience in years, DX means DevOps experience in years,
CN means country of work, and CS means company size
(S<100; M<1000; L<5000; XL>5000).

P# Job Title SX DX CN Domain CS

P1 DevOps Developer 9 2 IR IT S
P2 DevOps Consult. 9 3 BR IT M
P3 DevOps Developer 8 1 IR IT S
P4 Computer Tech. 10 2 BR Health S
P5 Systems Engineer 10 3 SP Telecom XL
P6 Developer 3 1 PO IT S
P7 Support Analyst 15 2 BR Telecom L
P8 DevOps Engineer 20 9 BR Marketing M
P9 IT Manager 14 8 BR IT M
P10 Network Admin. 15 3 BR IT S
P11 DevOps Superv. 6 4 BR IT M
P12 Cloud Engineer 9 3 US IT L
P13 Technology Mngr. 18 6 BR Food M
P14 IT Manager 7 2 BR IT S
P15 Developer 3 2 BR IT S

deployment automation and DevOps adoption? (2) Is it possible to
adopt DevOps without automation? (3) How has your company
fostered a collaborative culture?

With respect to data analysis, the interviews were recorded, tran-
scribed, and analyzed. The interviews with participants from Brazil
and Portugal were conducted in Portuguese and later translated
into English. The first moment of the analysis, called open coding
in GT, starts immediately after the transcription of the first inter-
view. Open coding lasted until there was no doubt about the core
category of the study. Similar to that described by Adolph et al. [3],
we started considering a core category candidate and changed later.
The first core category candidate was automation, but we realized
that this category did not explain most of the behaviors or events in
data. The sense of shared responsibilities in solving problems, and
the notion of product thinking are examples of events that could
not be naturally explained around automation. We then started to
understand that collaborative culture also appeared recurrently
in the analysis and with more potential to explain the remaining
events. Thus, we asked explicitly about the role of automation and
how the collaborative culture is formed in a DevOps adoption
process.

Considering the script adaptations and the analysis of new data
in a constant comparison process, taking into account the previous
analyses and the respective memos written during all the process,
after the tenth interview, we concluded that collaborative culture
was unequivocally the core category regarding how DevOps was
successfully adopted. At this moment, the open coded ended and
the selective coding started. We started by restricting the coding
only to specific variables that were directly related to the core cate-
gory and their relationships. Following three more interviews and
respective analysis, we realized that the new data added less and
less content to the emerging theory. That is, the explanation around
how the collaborative culture category is developed showed signs

of saturation. We then conducted two more interviews to conclude
that we had reached a theoretical saturation, that is, we were con-
vinced there were no more enablers or outcomes related to DevOps
adoption, the relationship between all of them was adequate and
the properties of core category were well developed.

At this point, we started the theoretical coding to find a way to
integrate all the concepts, categories, and memos in the form of a
cohesive and homogeneous theory, where we have pointed out the
role of the categories as enablers and outcomes. We will present
more details about the results of our theoretical coding phase in the
next section. To illustrate the coding procedures, we will show a
working example from an interview transcription to a category. It
is important to note that raw interview transcripts are full of noise.
We started the coding by removing this noise and identifying the
key points. Key points are summarized points from sections of the
interview [11]. For example:

Raw data: “So, here we have adopted this type of strategy that
is the infrastructure as code, consequently we have the versioning
of our entire infrastructure in a common language, in such a way
that any person, a developer, an architect, the operations guy, or even
the manager, he can look at it and describe that the configuration of
application x is y. So, it aggregates too much value for us exactly with
more transparency”

Key point: “Infrastructure as code contributes to transparency
because it enables the infrastructure versioning in a common language
to all professionals”

We then assigned codes to the key point. A code is a phrase that
summarizes the key point and one key point can lead to several
codes [13].

Code: Infrastructure as code contributes to transparency
Code: Infrastructure as code provides a common language
In this example, the concept that emerged was “infrastructure as

code”. The expression corresponding to this concept comes directly
from raw data, but this is not a rule. It is common for the concept
to be an abstraction, without emerging from an expression present
in raw data. At this moment, we already identified other concepts
that contribute to transparency. We wrote the following memo:

Memo: Similar to sharing on a regular basis and shared pipelines,
the concept of infrastructure as code is an important transparency
related one. These transparency related concepts have often been cited
as means to achieve greater collaboration between teams.

The constant comparison method was repeated on the concepts
to produce a third level of abstraction called categories. Infrastruc-
ture as code was grouped together with five other concepts into
the sharing and transparency category.

3 CATEGORIES AND CONCEPTS
Here we detail our understanding of the core category of DevOps
adoption (collaborative culture) and relate it to categories that
either work as DevOps enablers or are expected outcomes of a
DevOps adoption process. We have highlighted the concepts along
with raw data quotes from the interviews.

3.1 The Core Category: Collaborative Culture
The collaborative culture is the core category for DevOps adop-
tion. A collaborative culture essentially aims to remove the silos

ESEM ’18, October 11–12, 2018, Oulu, Finland W. Luz, G. Pinto, R. Bonifácio

between development and operations teams and activities. As a re-
sult, operations tasks—like deployment, infrastructure provisioning
management, and monitoring— should be considered as regular,
day-to-day, development activities. This leads to the first concept
related to this core category: operations tasks should be per-
formed by the development teams in a seamless way.

“A very important step was to bring the deployment into day-
to-day development, no waiting anymore for a specific day
of the week or month. We wanted to do deployment all the
time. Even if in a first moment it were not in production, a
staging environment was enough. [...] Of course, to carry out
the deployment continuously, we had to provide all the necessary
infrastructure at the same pace.” (P14, IT Manager, Brazil)

Without DevOps, a common scenario is an accelerated software
development without concerns about operations. At the end, when
the development team has a minimum viable software product,
it is sent to the operations team for publication. Knowing few
things about the nature of the software and how it was produced,
the operations team has to create and configure an environment
and to publish the software. In this scenario, software delivery is
typically delayed and conflicts between teams show up. When a
collaborative culture is fomented, teams collaborate to perform
the tasks from the first day of software development. With the
constant exercise of provisioning, management, configuration and
deployment practices, software delivery becomes more natural,
reducing delays and, consequently, the conflicts between teams.

“We work using an agile approach, planning 15-day sprints
where we focused on producing software and producing new
releases at a high frequency. However, at the time of delivering
the software, complications started to appear. (...) Deliveries
often delayed for weeks, which was not good neither for us nor
for stakeholders.” (P6, Developer, Portugal)

As a result of constructing a collaborative culture, the develop-
ment team no longer needs to halt its work waiting for the creation
of one application server, or for the execution of some database
script, or for the publication of a new version of the software in
a staging environment. Everyone needs to know the way this is
done and, with the collaboration of the operations team, this can
be performed in a regular basis. If any task can be performed by
the development team and there is trust between the teams, this
task is incorporated into the development process in a natural way,
manifesting the second concept related to collaborative culture
category: software development empowerment.

“ It was not feasible to have so many developers generating
artifacts and stopping their work to wait for another completely
separate team to publish it. Or needing a test environment and
having to wait for the operations team to provide it only when
possible. These activities have to be available to quickly serve the
development team.With DevOps we supply the need for freedom
and have more power to execute some tasks that are intrinsically
linked to their work.” (P5, Systems Engineer, Spain)

A collaborative culture requires product thinking, in sub-
stitution to operations or development thinking. The develop-
ment team has to understand that the software is a product that
does not end after “pushing” the code to a project’s repository and
the operations team has to understand that its processes do not start
when an artifact is received for publication. Product thinking is
the third concept related to our core category.

“We wanted to hire people who could have a product vision.
People who could see the problem and think of the best solution
to it, not only thinking of a software solution, but also the mo-
ment when that application will be published. We also brought
together developers to reinforce that everyone has to think of
the product and not only in their code or in their infrastructure”
(P12, Cloud Engineer, United States)

There should be a straightforward communication between
teams. Ticketing systems are cited as a typical and inappropriate
means of communication between development and operations
teams. Face-to-face communication is the best option, but consider-
ing that it is not always feasible, the continuous use of tools like
Slack and Hip Chat was cited as appropriate options.

“We also use this tool (Hip Chat) as a way to facilitate commu-
nication between development and operations teams. The pace
of work there is very accelerated, and thus it is not feasible to
have a bureaucratic communication. (...) This gave us a lot of
freedom to the development activities, in case of any doubt, the
operations staff is within the reach of a message.” (P5, Systems
Engineer, Spain)

There is a shared responsibility to identify and fix the issues
of a software when transitioning to production. The strategy of
avoiding liability should be kept away. The development team must
not say that a given issue is a problem in the infrastructure, then it
is responsibility of the operations team. Likewise, the operations
team must not say that a given failure was motivated by a problem
in the application, then it is development team’s responsibility. A
blameless context must exist. The teams need to focus on solving
problems, not on laying the blame on others and running away
from the responsibility. The context of shared responsibilities
involves not only solving problems, but also any other responsibility
inherent in the software product must be shared. Blameless and
shared responsibilities are the remaining concepts of the core
category.

“We realized that some people were afraid of making mistakes.
Our culture was not strong enough to make everyone feel com-
fortable to innovate and experiment without fear of making
mistakes. We made a great effort to spread this idea that no-one
is to be blamed for any problem that may occur. We take every
possible measure to avoid failures, but they will happen, and
only without blaming others we will be able to solve a problem
quickly.” (P8, DevOps Engineer, Brazil)

At first glance, considering the creation and strengthening of the
collaborative culture as the most important step towards DevOps
adoption seems somewhat obvious, but the respondents cited some

Building a Collaborative Culture: A GT of Well Succeeded DevOps Adoption in Practice ESEM ’18, October 11–12, 2018, Oulu, Finland

mistakes that they consider recurrent in not prioritizing this aspect
in a DevOps adoption:

“In a DevOps adoption, there is a very strong cultural issue that
the teams sometimes are not adapted to. Regarding that, one
thing that bothers me a lot and that I see very often is people
hitching DevOps exclusively by tooling or automation.” (P9, IT
Manager, Brazil)

Besides the core category (collaborative culture), we have iden-
tified three other sets of categories: the enablers of DevOps adop-
tion, the consequences of adopting DevOps, and the categories that
are both enablers and consequences.

3.2 Enabler Categories
Below, we detail the categories that support the adoption of DevOps
practices, including automation, sharing and transparency.

3.2.1 Automation. This category presents the higher number
of related concepts. This occurs because manual proceedings are
considered strong candidates to propitiate the formation of a silo,
hindering the construction of a collaborative culture. If a task
is manual, a single person or team will be responsible to execute
it. Although transparency and sharing can be used to ensure
collaboration even in manual tasks, with automation the points
where silos may arise are minimized.

“When a developer needed to build a new application, the previ-
ous workflow demanded him to create a ticket to the operations
teams, which should then manually evaluate and solve the re-
quested issue. This task could take a lot of time and there was no
visibility between teams about what was going on (. . .). Today,
those silos do not exist anymore within the company, in particu-
lar because it is not necessary to execute all these tasks manually.
Everything has been automated.” (P12, Cloud Engineer, United
States)

In addition to contributing to transparency, automation is
also considered important to ensure reproducibility of tasks, reduc-
ing rework and risk of human failure. Consequently, automation
increases the confidence between teams, which is an important
aspect of the collaborative culture.

“Before we adopted DevOps, there was a lot of manual work.
For example, if you needed to create a database schema, it was
a manual process; if you needed to create a database server, it
was a manual process; if you needed to create additional EC2 a

instances, such a process was also manual. This manual work
was time consuming and often caused errors and rework.” (P1,
DevOps Developer, Ireland)

aAmazon Elastic Compute Cloud

The eight concepts of the automation category will be detailed
next. In all interviews we extracted explanations about deploy-
ment automation (1), as part of DevOps adoption. Software de-
livery is the clearest manifestation of value delivery in software
development. In case of problems in deployment, the expectation
of delivering value to business can quickly generate conflicts and
manifest the existence of silos. In this sense, automation typically

increases agility and reliability. Some other concepts of automation
go exactly around deployment automation.

It is important to note that frequent and successfully deploy-
ments are not sufficient to generate value to business. Surely, the
quality of the software is more relevant. Therefore, quality checks
need to be automated as well, so they can be part of the deploy-
ment pipeline, as is the case of test automation (2). In addition,
to automate application deployment, the environment where the
application will run needs to be available. So, infrastructure pro-
visioning automation (3) must be also considered in the process.
Besides being available, the environment needs to be properly con-
figured, including the amount of memory and CPU, availability of
the correct libraries versions, and database structure. If the con-
figuration of some of these concerns has not been automated, the
deployment activity can go wrong. Therefore, the automation of
infrastructure management (4) is another concept of the au-
tomation category.

Modern software is built around services. Microservices was
commonly cited as one aspect of DevOps adoption. To Fowler and
Lewis [21], in the microservice architectural style, services need
to be independently deployable by fully automated deployment
machinery. We call this part of microservices characteristics of au-
tonomous services (5). Containerization (6) is also mentioned
as a way to automate the provisioning of containers—the environ-
ment where these autonomous services will execute. Monitoring
automation (7) and recovery automation (8) are the remaining
concepts. The first refers to the ability to monitor the applications
and infrastructure without human intervention. One classic exam-
ple is the widespread use of tools for sending messages reporting
alarms—through SMS, Slack/Hip Chat, or even cellphone calls– in
case of incidents. And the second is related to the ability to ei-
ther replace a component that is not working or roll back a failed
deployment without human intervention.

3.2.2 Transparency and Sharing. It represents the grouping of
concepts emerged from recurrent interviews that help to dissemi-
nate concepts and activities. Training, tech talks, committees lec-
tures, and round tables are examples of these events. Creating
channels by using communication tools is another recurrent topic
related to sharing along the processes of DevOps adoption. Ac-
cording to the content of what is shared, we have identified three
main concepts:

• Knowledge sharing: the professionals interviewed mention a
wide range of skills they need to acquire during the adoption
of DevOps, citing structured sharing events to smooth the
learning curve of both technical and cultural knowledge.
• Activities sharing: where the focus is on sharing how simple
tasks can or should be performed (e.g., sharing how a bug
has been solved). Communication tools, committees, and
round tables are the common forum for sharing this type of
content.
• Process sharing: here, the focus is on sharing whole working
processes (e.g., the working process used to provide a new
application server). The content is more comprehensive than
in sharing activities. Tech talks and lectures are the common
forum for sharing processes.

ESEM ’18, October 11–12, 2018, Oulu, Finland W. Luz, G. Pinto, R. Bonifácio

Sharing concepts contribute with the collaborative culture.
For example, all team members gain best insight about the entire
software production process, with a solid understanding of shared
responsibilities. A shared vocabulary also emerged from sharing
and this facilitates communication.

The use of infrastructure as code was recurrently cited as a
means for guaranteeing that everyone knows how the execution
environment of an application is provided and managed. Bellow, is
an interview transcript which sums up this concept.

“So, here we have adopted this type of strategy that is the in-
frastructure as code, consequently we have the versioning of
our entire infrastructure in a common language, in such a way
that any person, a developer, an architect, the operations guy,
or even the manager, he can look at it and describe that the con-
figuration of application x is y. So, it aggregates too much value
for us exactly with more transparency.” (P12, Cloud Engineer,
United States)

Regarding transparency and sharing, we have also found the
concept of sharing on a regular basis, which suggests that shar-
ing should be embedded in the process of software development, in
order to contribute effectively to transparency (e.g., daily meetings
with Dev and Ops staff together was one practice cited to achieve
this). As we will detail in the continuous integration concept of the
agility category, a common way to integrate all tasks is a pipeline.
Here, we have the concept of shared pipelines, which indicates
that the code of pipelines must be accessible to everyone, in order
to foment transparency.

“The code of how the infrastructure is made is open to developers
and the sysadmins need to know some aspects of how the ap-
plication code is built. The code of our pipelines is accessible to
everyone in the company to know how activities are automated”
(P13, Technology Manager, Brazil)

3.3 Categories related to the DevOps adoption
outcomes

In this section we detail the categories that correspond to the ex-
pected consequences with the adoption of DevOps practices, in-
cluding agility and resilience; as discussed as follows.

3.3.1 Agility. Agility is frequently discussed as a major out-
come of DevOps adoption. With more collaboration between teams,
continuous integration with the execution of multidisciplinary
pipelines is possible, and it is an agile related concept frequently ex-
plored. These pipelines might contain infrastructure provisioning,
automated regression testing, code analysis, automated deployment
and any other task considered important to continuously execute.

These pipelilnes encourage two other agile concepts: continu-
ous infrastructure provisioning and continuous deployment.
The latter is one of the most recurrent concepts identified in the
interview analysis. Before DevOps, deployment had been seen as
a major event with high risk of downtime and failure involved.
After DevOps, the sensation of risk in deployment decreases and
this activity became more natural and frequent. Some practitioners
claim to perform dozens of deployments daily.

3.3.2 Resilience. Also related to an expected outcome of adopt-
ing DevOps, resilience refers to the ability of applications to adapt
quickly to adverse situations. The first related concept is auto scal-
ing—i.e., allocating more or fewer resources to applications that
increase or decrease on demand. Another concept related to the
resilience category is recovery automation, that is the capability
that applications and infrastructure have to recovery itself in case of
failures. There are two typical cases of recovery automation: (1) in
cases of instability in the execution environment of an application
(a container, for example) an automatic restart of that environment
will occur; and (2) in cases of new version deployment, if the new
version does not work properly, the previous one must be restored.
This auto restore of a previous version decrease the chances of
downtimes due to errors in specific versions, which is the concept
of zero down-time, the last one of the resilience category.

3.4 Categories that are both Enablers and
Outcomes

Finally, we will detail bellow the categories that are both enablers
and outcomes, including continuous measurement and quality
assurance; as discussed as follows.

3.4.1 Continuous Measurement. As an enabler, regularly per-
forming the measurement and sharing activities contributes to
avoiding existing silos and reinforces the collaborative culture,
because it is considered a typical responsibility of the operations
team.

“Before, we had only sporadic looks to zabbixa to check if ev-
erything was OK. At most someone would stop to look memory
and CPU consumption. To maintain the quality of services, we
expanded this view of metrics collection so that it became part
of the software product. We then started to collect metrics con-
tinuously and with shared responsibilities. For example, if an
overflow occurred in the number of database connections, every-
one received an alert and had the responsibility to find solutions
to that problem.” (P3, DevOps Developer, Ireland)

ahttps://www.zabbix.com/

As an outcome, the continuously collection of metrics from ap-
plications and infrastructure was appointed as a necessary behavior
of the teams after the adoption of DevOps. It occurs because the
resultant agility increases the risk of something going wrong. The
teams should be able to react quickly in case of problems, and the
continuous measurement allows it to be proactive and resilient.

“With DevOps we can do deployment all the time and, con-
sequently, there was a need for greater control of what was
happening. So, we used grafanaa and prometheusb to follow
everything that is happening in the infrastructure and in the
applications. We have a complete dashboard in real time, we
extract reports and, when something goes wrong, we are the
first to know.” (P10, Network Administrator, Brazil)

ahttps://grafana.com/
bhttps://prometheus.io/

Continuous monitoring involves application log monitoring
(1), a concept that corresponds to the use of the log produced by

https://www.zabbix.com/
https://grafana.com/
https://prometheus.io/

Building a Collaborative Culture: A GT of Well Succeeded DevOps Adoption in Practice ESEM ’18, October 11–12, 2018, Oulu, Finland

applications and infrastructure as data source. The concept of con-
tinuous infrastructure monitoring (2) indicates that the moni-
toring is not performed by a specific person or team in a specific
moment. The responsibility to monitor the infrastructure is shared
and it is executed on a daily basis. Continuous application mea-
surement (3), in turn, refers to the instrumentation to provide
metrics that are used to evaluate aspects and often direct evolution
or business decisions. All this monitoring/measurement can occur
in an automated way, the monitoring automation has already
been detailed in subsection 3.2.1.

3.4.2 Quality Assurance. In the same way as continuous mea-
surement, quality assurance is a category that can work both as
enabler and as outcome. As enabler because increasing quality leads
to more confidence between the teams, which in the end generates
a virtuous cycle of collaboration. As outcome, the principle is that
it is not feasible to create a scenario of continuous delivery of soft-
ware with no control regarding the quality of the products and its
production processes.

Respondents pointed to the need for a sophisticated control of
which code should be part of deliverables that are continuously
delivered. Git Flowwas recurrently cited as a suitable code branch-
ing (1) model, the first concept of quality assurance. In a previous
section, we explored the automation face of microservices and test-
ing. These elements have also a quality assurance face. Another
characteristic of microservices is the need for small services focus-
ing in doing only one thing. These small services are easier to scale
and structure, which manifest a quality assurance concept: cohe-
sive services (2). Regarding testing, another face is continuous
testing (3). To ensure quality in software products, we found that
tests (as well as other quality checks) should occur continuously.
Continuous testing is considered challenging without automation,
and this reinforces the need for automated tests.

Another two concepts cited as part of quality assurance in Dev-
Ops adoption are the use of source code static analysis (4) to
compute quality metrics in source code and the parity between
environments (development, staging and production) to reinforce
transparency and collaboration during software development.

4 A THEORY ON DEVOPS ADOPTION
The results of a grounded theory study, as the name of the method
itself suggests, are grounded on the collected data, so the hypothe-
ses emerge from data. A grounded theory should describe the key
relationships between the categories that compose it, i.e., a set of
inter-related hypotheses [13]. We present the categories of our
grounded theory about DevOps adoption as a network of the two
categories of enablers (automation, sharing and transparency)
that are commonly used to develop the core category collaborative
culture, as discussed in the previous section. Based on our under-
standing, implementing the enablers to develop the collaborative
culture typically leads to concepts related to two categories of ex-
pected outcomes: agility and resilience. Moreover, there are two
categories that can be considered both as enablers and as outcomes:
continuous measurement and quality assurance. In this sec-
tion, we describe the relationships between those categories, build-
ing a theory of DevOps adoption.

4.1 A General Path for DevOps Adoption
In Section 1 we presented the general question of this research: is
there any recommended path to adopt DevOps? Here, we elabo-
rated a response, based on the analyses conducted as detailed in
Section 2. The main point that should be formulated is the construc-
tion of a collaborative culture between the software development
and operations teams and related activities. According to our find-
ings, the other categories, many of which are also present in other
studies that have investigated DevOps, only make sense if the prac-
tices and concepts related to them either contribute to the level
of a collaborative culture or lead to the expected consequences
of a collaborative culture. This understanding induces several
hypothesis, as shown below.

Hypothesis 1: Certain categories related to DevOps adoption
only make sense if used to increase the collaborative culture
level. We call this set of categories of enablers.

Based on this first hypothesis, the maturity of DevOps adoption
does not advance in situations where only one team is responsi-
ble to understand, adapt, or evolve automation—even when such
automation supports different activities like deployment, infras-
tructure provisioning and monitoring. The same holds for the other
enabling categories. That is, in situations that transparency and
sharing do not contribute to the collaborative culture, they do
not contribute to DevOps adoption as a whole. Some examples that
support our first hypothesis include:

“DevOps involves tooling, but DevOps is not tooling. That is,
people often focus on using tools that are called ‘DevOps tools’,
believing that this is what DevOps is. I always insist that DevOps
is not tooling, DevOps involves the proper user of tools to improve
software development procedures.” (P2, DevOps Consultant,
Brazil)

Hypothesis 2: Some other categories are not related to Dev-
Ops adoption for contributing to increase the collaborative
culture. level, but for emerging as an expected or necessary
consequence of the adoption. These categories represent the set
of outcomes.

In a first moment, the simple fact that a team is more agile in
delivering software, or more resilient in failure recovery, does not
contribute directly to bringing operations teams closer to develop-
ment teams. Nevertheless, a signal of a mature DevOps adoption
is an increased capacity for continuously delivering software (and
thus being more agile) and for building resilient infrastructures.

Hypothesis 3: The categories Continuous Measurement
and Quality Assurance are both related to DevOps enabling
capacity and to DevOps outcomes.

Measurement is cited as a typical responsibility of the operations
team. At the same time that sharing this responsibility reduces silos,
it is also cited that measurement is a necessary consequence of Dev-
Ops adoption. Particularly because the continuous delivery of soft-
ware requires more control, which is supplied by concepts related
to the continuous measurement category. The same premise is

ESEM ’18, October 11–12, 2018, Oulu, Finland W. Luz, G. Pinto, R. Bonifácio

valid to the quality assurance category. At first glance, qual-
ity assurance appears as one response to the context of agility
in operations as a result of DevOps adoption. But, the efforts in
quality assurance of software products increase the confidence be-
tween the development and operations teams, increasing the level
of collaborative culture.

Altogether, DevOps enablers are the means commonly used to
increase the level of the collaborative culture in a DevOps adop-
tion process. We have identified five categories of DevOps enablers:
Automation, Continuous Measurement, Quality Assurance,
Sharing, and Transparency. Another finding of our study leads
to our fourth hypothesis.

Hypothesis 4: There is no precedence between enablers in a
DevOps adoption process.

We have realized that the adoption process might not have to
priorize any enabler, and a company that aims to implement DevOps
should start with the enablers that seem more appropriate (in terms
of its specificities). Accordingly, we did not find any evidence that an
enabler is more efficient than another for creating a collaborative
culture.Automation is the category that appears more frequently
in our study, though several participants make clear that associating
DevOps with automation is a misconception.

“I think that the expansion of collaboration between teams in-
volved other things. It was not just automation. There must be
an alignment with the business needs. (...) I think that DevOps
enabled a broader understanding of software production and we
realized the very fact that it is not about automating everything.
(...) So, I see with caution a supposed vision that automating
things can be the way to implement DevOps.” (P7, Support
Analyst, Brazil)

DevOps outcomes is that group of categories that does not pri-
marily produce the expected effect of a DevOps enabler, typically
concepts that are expected as consequences of an adoption of Dev-
Ops. We have identified four categories that can work as Dev-
Ops outcomes: agility, continuous measurement, quality as-
surance, and software resilience. Note that, as mentioned before,
continuous measurement and quality assurance are both en-
ablers and outcomes.

That is, a well succeeded DevOps adoption typically increases the
potential of agility of teams and enables continuous measure-
ment, quality assurance and resilience of applications. However,
in some situations, this potential is not completely used due to busi-
ness decisions. For example, one respondent cited that, at a first
moment, the company did not allow the continuous deployment
(more potential of agility) of applications in production:

“We had conditions and security to continuously publish in
production, however, in the beginning, the managers were afraid
and decided that the publication would happen weekly.” (P9, IT
Manager, Brazil)

4.2 A Model for DevOps Adoption and Its
Application

Based on H1-H4 hypothesis, we present a three step model that
explains how to adopt DevOps according to our understanding.
The model considers the following steps:

(1) In the first step, a company should disseminate that the
goal with a DevOps adoption is to establish a collaborative
culture between development and operations teams.

(2) In the second step, a company should select and develop the
most suitable enablers according to its context. The enablers
are means commonly used to develop the collaborative cul-
ture and its concepts.

(3) In the third step, a company should check the outcomes of
the DevOps adoption in order to verify the alignment with
industrial practices and to explore them according to the
company’s need.

Our proposed model has been applied to guide the DevOps adop-
tion at the Brazilian Federal Court of Accounts (TCU) where one of
the authors of this study works as a software developer. The TCU
is responsible for the accounting, financial, budget, performance,
and property oversight of federal institutions and entities of the
country. Currently, there are 2500 professionals working at the
TCU, of which approximately 300 work directly on either software
development or operations. The source code repository at the TCU
hosts more then 200 software projects, totaling over 4 million lines
of code. Before the application of our model, the TCU had produced
some w.r.t deployment automation results and the focus was being
directed to the tooling issue. Considering this incomplete perspec-
tive of DevOps, the conflicts between development and operations
teams continued. That is, the mere advance in implanting “DevOps
tools” simply changed the points of conflict, but they persisted.

After the presentation of our model in a series of lectures, de-
velopment and operations teams changed their focus to build a
collaborative culture. This change was only possible due to the
engagement and sponsorship of the IT managers. Looking to the
concepts within the collaborative culture category, the first prac-
tical action at the TCU was to facilitate communication between
teams. The use of tickets was then abolished. The problems had
to be solved in a collaborative way, preferably face to face. Look-
ing to enablers, the TCU is applying sharing and transparency
concepts. The role of internal tech talks and committees to dis-
seminate that collaboration culture and related concepts is being
reinforced. When a new infrastructure had to be provided and con-
figured, the current guideline is that there must be a kind of pair
programming between developers and infrastructure members. All
application related tasks must be executed in a collaborative way.
Naturally, the professionals noticed that automation would facil-
itate the operationalization of that collaboration. For this reason,
the infrastructure provisioning and management was automated.

The TCU also uses continuous measurement and quality assur-
ance concepts as enablers of its DevOps adoption. The applications
started to be continuously tested and measured. The tests were au-
tomated and included in the pipelines. Verification of test coverage
and quality code also became part of the pipeline. This increased
the confidence between teams. The TCU started to explore the

Building a Collaborative Culture: A GT of Well Succeeded DevOps Adoption in Practice ESEM ’18, October 11–12, 2018, Oulu, Finland

potential of DevOps tools, like recovery automation, zero down-
time, and auto scaling. The deployment has also been automated.
It is important to note that, before DevOps, deployment activities
were historically a controversial point at the TCU. Several conflicts
occurred over time. Rigid procedures were created to try to avoid
problems. These “rigid procedures” often led to periods of months
without any software delivery. The more collaborative scenario,
with a strong appeal in automation and quality, created by following
an appropriate path in adopting DevOps, enabled the deployment
activities to become a lightweight task at the TCU. Continuous
deployment became a reality and, currently, several deployments
occur as regular activities of the development teams at the TCU.

Since the TCU is a government institution, some advances in
DevOps adoption still comes up against regulatory issues. For ex-
ample, there are internal regulations that establish that only the
operations sector is responsible for issues related to application
infrastructure, contrasting with shared responsibilities that are part
of the collaborative culture. Nevertheless, our model enabled the
TCU to adopt DevOps in a more sustainable way. Knowing the
role of each DevOps element in the adoption was fundamental
for the TCU to avoid points of failure and to build a collaborative
environment that supports the exploration of DevOps benefits.

5 THREATS TO VALIDITY
Regarding construct validity, we are actually relying on the subjec-
tive practitioners’ perception when we stated that we performed
our study considering successful cases of DevOps adoptions. How-
ever, currently, there is no objective way to measure whether or
not a DevOps adoption was successful. Although Grounded The-
ory offers rigorous procedures for data analysis, our qualitative
research may contain some degree of research bias. Certainly, other
researchers might form a different interpretation and theory after
analyzing the same data, but we believe that the main perceptions
would be preserved. This is a typical threat related to GT studies,
which do not claim to generate definitive findings. The resulting
theory, for instance, might be different in other contexts [15].

For this reason, we do not claim that our theory is absolute
or final. We welcome extensions to the theory based on unseen
aspects or finer details of the present categories or potential discov-
ery of new dimensions from future studies. Future work can also
focus on investigating contexts where DevOps adoption did not
succeed, aiming to validate if our model could be relevant in this
scenario too. Finally, regarding external validity, although we con-
sidered in our study the point of view of practitioners with different
backgrounds, working in companies from different domains, and
distributed across five countries, we do not claim that our results are
valid for other scenarios—although we almost achieved saturation
after the 12th interview. Accordingly, our degree of heterogeneity
complement previous studies that mostly focus in a single company
(as we will discuss next).

6 RELATEDWORK
A literature review by Erich et al. [10] presents 8 main concepts
related to DevOps: culture, automation, measurement, sharing, ser-
vices, quality assurance, structures and standards. The authors
pointed out that the first four concepts are related to the CAMS

framework, proposed byWillis [27]. The paper concludes that there
is a great opportunity for empirical researchers to study organi-
zations experimenting with DevOps. Other studies (e.g., [1, 8, 22,
23, 25]) mixed literature reviews with empirical data to investigate
DevOps. Although our research and recent literate are interested
in understanding DevOps, there are subtle differences in both (1)
the methodological aspects and (2) the focus of each work.

First of all, none of the aforementioned works focused on ex-
plaining the process of DevOps adoption, in particular, using data
collected in the industry. This is unfortunate, since the practitioners’
perception present an unique point of view that researchers alone
could hardly grasp. Moreover, although the literature has a number
of useful elements, there is a need to complement such elements
with a perspective on how DevOps has been adopted, containing
guidance about how to connect all these isolated parts and then
enabling new candidates to adopt DevOps in a more consistent way.
For instance, the work of Erich et al. [1] focus on investigating the
ways in which organizations implement DevOps. However, this
work relies only in literature review and does not formulate new
hypothesis about DevOps adoption. Second, in terms of results, our
main distinct contribution is to improve the guidance to new prac-
titioners in DevOps adoption. Next, we present the overlappings
of our results with the existing literature, presenting also the main
differences that make the contributions of our work clearer.

The work of J. Smeds et al. [25] uses a literature review to pro-
duce one explanation about DevOps through a set of technological
and cultural enablers. Additionally, their results present a set of
impediments of DevOps adoption based on an interview with 13
subjects of a same company, and whose DevOps adoption process
was at an initial stage. The main similarities with our study are: (1)
grouping elements as DevOps enablers; and (2) the presence of sev-
eral similar concepts: (a) testing, deploying, monitoring, recovering
and infrastructure automation; (b) continuous integration, testing
and deployment; (c) service failure recovery without delay; and (d)
constant, effortless communication. The main differences are: (1)
their work does not group concepts into categories, for example:
most of their technological enablers were grouped together in our
study within the automation category; (2) presents cultural en-
ablers as common contributor to DevOps, not as the most important
concern; and (3) the empirical part of the study focus on building a
list of possible impediments to DevOps adoption, not on providing
guidance to new adopters.

Lwakatare et al. [23] proposed a conceptual framework to explain
“DevOps as a phenomenon”. The framework is organized around
five dimensions (collaboration, automation, culture, monitoring
and measurement) and these dimensions are presented with related
practices. The main similarity with our study is that all dimensions
are also presented here. The main differences are: (1) collaboration
and culture are presented by us as a single abstraction; (2) Concepts
related to monitoring and measurement are grouped by us in a
single category: continuous measurement; and (3) it does not
indicate a major dimension (aka, the core category).

França et al. [8] present a DevOps explanation produced by
means of a multivocal literature review. The data was collected
from multiple sources, including gray literature, and analyzed by
using procedures from GT. The results contain a set of DevOps prin-
ciples, where there is most of the overlapping with our study. In

ESEM ’18, October 11–12, 2018, Oulu, Finland W. Luz, G. Pinto, R. Bonifácio

addition, the paper presents a definition to DevOps, issues motivat-
ing its adoption, required skills, potential benefits and challenges of
adopting DevOps. The main similarities are: (1) Automation, shar-
ing, measurement and quality assurance are presented as DevOps
categories; and (2) Their social aspects category is similar to our
collaborative culture category. The main differences are: (1) it
presents DevOps as a set of principles, different from enablers and
outcomes in our study; and (2) the Leanness category is not present
in our study and the resilience category is not present in theirs;
and (3) it does not indicate a core category.

The study conducted by Erich et al. [1], similarly to the oth-
ers cited above, combined literature review with some interviews
with practitioners. In the literature review part, the papers were
labeled and the similar labels are grouped. The 7 top labels are then
presented as elements of DevOps usage in literature: culture of
collaboration, automation, measurement, sharing, services, qual-
ity assurance and governance. After the literature review, six in-
terviews were conducted in order to obtain evidence of DevOps
adoption in practice. The interviews were analyzed individually
and a comparison between them was made, focusing on problems
that organizations try to solve by implementing DevOps, problems
encountered when implementing DevOps and practices that are
considered part of DevOps. The main similarity with our study
is that 5 of their 7 groups are also present in our study (culture
of collaboration, automation, measurement, sharing and quality
assurance). The main differences are: (1) it does not consolidate
the practitioners’ perspective, but only compare it with literature
review results; and (3) it does not indicate a major group.

7 FINAL REMARKS
In this paper, grounded in data collected from successfully DevOps
adoption experiences, we present a theory on DevOps adoption, a
model of how to adopt DevOps according to this theory, and a case
of applying it in practice.

We found out that the DevOps adoption involves a very specific
relationship between seven categories: agility, automation, col-
laborative culture, continuous measurement, quality assur-
ance, resilience, sharing and transparency. The core category
of DevOps adoption is the collaborative culture. Some of the iden-
tified categories (i.e., automation and sharing and transparency)
propitiate the foundation of a collaborative culture. Other cate-
gories (i.e., agility and resilience) are expected consequences of this
formation. Finally, two other categories (i.e., continuous measure-
ment and quality assurance) work as both foundations and conse-
quences. We call the foundations categories “DevOps enablers”, and
the consequences categories “DevOps outcomes”. Crucially, this
model simplifies the understanding of the complex set of elements
that are part of DevOps adoption, enabling it to be more direct and
to offer a lower risk of focusing on wrong things.

We experimented with this model in real settings, improving the
benefits of adopting DevOps within a government institution that
faced many problems with the separation between the development
and operations teams.

REFERENCES
[1] Erich F. M. A., Amrit C., and Daneva M. 2017. A qualitative study of DevOps

usage in practice. Journal of Software: Evolution and Process 29, 6 (2017), e1885.

[2] Steve Adolph, Wendy Hall, and Philippe Kruchten. 2011. Using grounded theory
to study the experience of software development. Empirical Software Engineering
16, 4 (2011), 487–513.

[3] Steve Adolph, Philippe Kruchten, andWendyHall. 2012. Reconciling perspectives:
A grounded theory of how people manage the process of software development.
Journal of Systems and Software 85, 6 (2012), 1269–1286.

[4] John Allspaw and Paul Hammond. 2009. 10+ deploys per day: Dev and ops coop-
eration at Flickr. Talk presented at Velocity: Web Performance and Operations
Conference.

[5] Jane H Barnsteiner. 2002. Using Grounded Theory in Nursing. Journal of Ad-
vanced Nursing 40, 3 (2002), 370–370.

[6] Kathy Charmaz. 1990. Discovering chronic illness: using grounded theory. Social
science & medicine 30, 11 (1990), 1161–1172.

[7] Gerry Coleman and Rory O’Connor. 2007. Using grounded theory to understand
software process improvement: A study of Irish software product companies.
Information and Software Technology 49, 6 (2007), 654–667.

[8] Breno B. Nicolau de França, Helvio Jeronimo, Junior, and GuilhermeHorta Travas-
sos. 2016. Characterizing DevOps by Hearing Multiple Voices. In Proceedings
of the 30th Brazilian Symposium on Software Engineering (SBES ’16). ACM, New
York, NY, USA, 53–62. https://doi.org/10.1145/2973839.2973845

[9] Norman K Denzin. 2007. Grounded theory and the politics of interpretation. The
Sage handbook of grounded theory (2007), 454–471.

[10] Floris Erich, Chintan Amrit, and Maya Daneva. 2014. Cooperation Between Infor-
mation System Development and Operations: A Literature Review. In Proceedings
of the 8th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM ’14). ACM, New York, NY, USA, Article 69, 1 pages.
https://doi.org/10.1145/2652524.2652598

[11] Svetla Georgieva and George Allan. 2008. Best Practices in Project Management
Through a Grounded Theory Lens. Electronic Journal of Business ResearchMethods
6, 1 (2008), 43–52.

[12] Barney G. Glaser and Anselm L. Strauss. 1967. The Discovery of Grounded Theory:
Strategies for Qualitative Research. Aldine Publishing Company.

[13] Rashina Hoda and James Noble. 2017. Becoming Agile: A Grounded Theory of
Agile Transitions in Practice. In Proceedings of the 39th International Conference
on Software Engineering (ICSE ’17). IEEE Press, Piscataway, NJ, USA, 141–151.
https://doi.org/10.1109/ICSE.2017.21

[14] Rashina Hoda, James Noble, and Stuart Marshall. 2011. The impact of inadequate
customer collaboration on self-organizing Agile teams. Information and Software
Technology 53, 5 (2011), 521–534.

[15] Rashina Hoda, James Noble, and Stuart Marshall. 2012. Developing a grounded
theory to explain the practices of self-organizing Agile teams. Empirical Software
Engineering 17, 6 (2012), 609–639.

[16] Michael Httermann. 2012. DevOps for developers. Apress.
[17] Sally A Hutchinson. 1986. Education and grounded theory. Journal of Thought

(1986), 50–68.
[18] Sami Jantunen and Donald C Gause. 2014. Using a grounded theory approach

for exploring software product management challenges. Journal of Systems and
Software 95 (2014), 32–51.

[19] G Kenealy. 2008. Management Research and Grounded Theory: A review of
grounded theory building approach in organisational and management research.
The Grounded Theory Review 7, 2 (2008), 95–117.

[20] Puppet Labs, DevOps Research, and DORA Assessment. 2018. 2017 State of
DevOps Report. Technical Report. Retrieved May, 2018 from https://puppet.com/
resources/whitepaper/state-of-devops-report.

[21] James Lewis and Fowler Martin. 2014. Microsservices. http://martinfowler.com/
articles/microservices.html. Accessed: 2018-05-22.

[22] Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo. 2015. Dimensions of Dev-
Ops. In Agile Processes in Software Engineering and Extreme Programming, Casper
Lassenius, Torgeir Dingsøyr, and Maria Paasivaara (Eds.). Springer International
Publishing, Cham, 212–217.

[23] Lucy Ellen Lwakatare, Pasi Kuvaja, andMarkku Oivo. 2016. An Exploratory Study
of DevOps Extending the Dimensions of DevOps with Practices. Proceedings of
the Eleventh International Conference on Software Engineering Advances, 91–99.

[24] Leah Riungu-Kalliosaari, Simo Mäkinen, Lucy Ellen Lwakatare, Juha Tiihonen,
and Tomi Männistö. 2016. DevOps Adoption Benefits and Challenges in Practice:
A Case Study. In Product-Focused Software Process Improvement, Pekka Abrahams-
son, Andreas Jedlitschka, Anh Nguyen Duc, Michael Felderer, Sousuke Amasaki,
and Tommi Mikkonen (Eds.). Springer International Publishing, Cham, 590–597.

[25] Jens Smeds, Kristian Nybom, and Ivan Porres. 2015. DevOps: A Definition and
Perceived Adoption Impediments. In Agile Processes in Software Engineering and
Extreme Programming, Casper Lassenius, Torgeir Dingsøyr, and Maria Paasivaara
(Eds.). Springer International Publishing, Cham, 166–177.

[26] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. 2016. Grounded Theory in
Software Engineering Research: A Critical Review and Guidelines. In Proceedings
of the 38th International Conference on Software Engineering (ICSE ’16). ACM, New
York, NY, USA, 120–131. https://doi.org/10.1145/2884781.2884833

[27] John Willis. 2010. What devops means to me. (2010). Retrieved from https:
//blog.chef.io/2010/07/16/what-devops-means-to-me/.

https://doi.org/10.1145/2973839.2973845
https://doi.org/10.1145/2652524.2652598
https://doi.org/10.1109/ICSE.2017.21
https://puppet.com/resources/whitepaper/state-of-devops-report
https://puppet.com/resources/whitepaper/state-of-devops-report
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://doi.org/10.1145/2884781.2884833
https://blog.chef.io/2010/07/16/what-devops-means-to-me/
https://blog.chef.io/2010/07/16/what-devops-means-to-me/

	Abstract
	1 Introduction
	2 Research Method
	3 Categories and Concepts
	3.1 The Core Category: Collaborative Culture
	3.2 Enabler Categories
	3.3 Categories related to the DevOps adoption outcomes
	3.4 Categories that are both Enablers and Outcomes

	4 A Theory on DevOps Adoption
	4.1 A General Path for DevOps Adoption
	4.2 A Model for DevOps Adoption and Its Application

	5 Threats to Validity
	6 Related Work
	7 Final Remarks
	References

