
Noname manuscript No.
(will be inserted by the editor)

On the Challenges of Open-Sourcing Proprietary
Software Projects

Gustavo Pinto · Igor Steinmacher · Luiz
Felipe Dias · Marco Gerosa

Received: date / Accepted: date

Abstract The open source software (OSS) movement has become widely rec-
ognized as an effective way to deliver software. Even big software companies,
well-known for being restrictive when it comes to publishing their source code
artifacts, have recently adopted open source initiatives and released for gen-
eral use the source code of some of their most notable products. We conducted
an exploratory study on merits of the widespread belief that open-sourcing a
proprietary software project will attract external developers, like casual con-
tributors, and therefore improve software quality (e.g., “given enough eyeballs,
all bugs are shallow”). By examining the pre- and post-migration software his-
tory of eight active, popular, non-trivial proprietary projects that became open
source, we characterize the phenomenon and identify some challenges. Con-
trary to what many believe, we found that only a few projects experienced a
growth in newcomers, contributions, and popularity; furthermore, this growth
does not last long. The results from the study can be useful for helping soft-
ware companies to better understand the hidden challenges of open-sourcing
their software projects to attract external developers.

Keywords Open source software · Proprietary software · Community
Engagement · Open Collaboration · Popularity

Gustavo Pinto
E-mail: gpinto@ufpa.br

Igor Steinmacher
E-mail: igorfs@utfpr.edu.br

Luiz Felipe Dias
E-mail: luizdias@alunos.utfpr.edu.br

Marco Gerosa
E-mail: marco.gerosa@nau.edu

2 Gustavo Pinto et al.

1 Introduction

The open source movement has become a popular distribution model for gold-
standard software [12,40]. More interestingly, however, is the fact that several
software companies, otherwise well-known for being restrictive when it comes
to publishing their software artifacts, have begun not only using open source
software, but also promoting open source initiatives [2]. In the last few years,
Google released more than 900 open source projects, amounting to more than
20 million lines of source code.1 Similarly, Microsoft and Apple released some
of their products as open source projects. Notable examples include the swift

programming language, which was forked more than 1,900 times in the first
week after open-sourcing (as further discussed in Section 4). The increasing use
and promotion of open source might indicate a strong interest from external
developers, empowering them to “take their code-based innovations to a whole
new level and explore new depths,” as stated by a roslyn — the .NET Compiler
— member [27].

At a first glance, one might note that open-sourcing a proprietary project
yields several benefits. For instance, open source software may: (1) foster exter-
nal contributions [12]; (2) create new and innovative ideas [26]; and, possibly,
(3) increase the pace of change [37]. In fact, there is a recurring belief that
popular open source projects are more prone to attracting new source code
contributors [9], which in turn increases a project’s diversity and enhances
problem-solving skills [52]. Moreover, open-sourcing might also improve soft-
ware quality, as already envisioned by Linus’s Law, which says “Given a large
enough beta-tester and co-developer base, almost every problem will be char-
acterized quickly and the fix obvious to someone” [40], which was empirically
investigated by Meneely and colleagues [31]. However, due to the lack of liter-
ature focusing on the transition from proprietary software to open source soft-
ware, it is unclear whether these well-known assertions from the traditional
open source literature also hold for proprietary software that transitions to
open source.

The potential benefits of open-sourcing, if achieved, do not come without
cost. Since open-sourcing involves engagement and collaboration [40], going
open source means creating, maintaining, and fostering a community around
technology; e.g., attracting new developers who are eager to implement new
features [8,15,53]. Moreover, when a software company open-sources a software
project, the software development team might face additional overhead due to
the non-trivial costs of: (1) refactoring the code base to be comprehensible; (2)
setting up a development website and communication channels; and (3) writing
documentation for newcomers [12]. It is not uncommon for newcomers to find
a project too difficult to understand [47] or contribute to [37]. As we shall see,
some projects might have perceived the hidden cost of open-sourcing: as one
maintainer said, “we’ve invested a huge amount of effort into making Zulip’s

1 https://developers.google.com/opensource/projects

https://developers.google.com/open source/projects

On The Challenges of Open-Sourcing Proprietary Software Projects 3

development environment really easy to setup and use compared to other large
webapps.”.

To better understand this complex landscape, in this paper we explore the
process of open-sourcing proprietary software projects. For this study, we se-
lected multiple cases of software projects that published their source code on
GitHub. As of 2016, GitHub was the most popular collaborative coding en-
vironment in the world, with over 38 million software repositories2 and more
than 15 million contributors. Indeed, GitHub emerged as the de facto place
for software developers to get acquainted with, and eventually contribute to,
open source projects [51]. To analyze the transition of proprietary software to
open source through GitHub, we curated a list of 8 popular, active, non-trivial,
and diverse projects (see Section 3 for details). The list includes swift from
Apple, hhvm from Facebook, roslyn from Microsoft, and atom from GitHub.
Using data and meta-data acquired from software repositories, we analyzed
collaboration (such as the number of newcomers, active contributors, and con-
tributions) and popularity metrics (such as the number of stars and forks) [6,
51], before and after the migration to open source. To cross-validate our find-
ings, we conducted a survey with the newly open source communities.

Considering the projects analyzed, the main findings of the paper are the
following:

1. In spite of widespread belief, the rise of contributions is not straightfor-
ward; only 3 out of 8 studied projects presented considerable growth of
contributions.

2. A “newcomers wave:” a high number of newcomers make a few contribu-
tions to the project once it becomes open source, but do not return.

3. The number of pull requests (PR) increases soon after the transition to
open source, and 7 out of the 8 studied projects merged a steady flow
of them into the main repository. By inspecting pull requests, we found
that 82% of the PRs submitted to hubot are from external members (37%
for atom), which is not always the case in OSS projects [9,14]. A manual
investigation of ∼480 PRs confirmed this fact.

4. A burst on the number of change requests (issues) occurred after the an-
alyzed projects became open source (e.g., roslyn received about ∼500
new issues in the first two months after open-sourcing). Analyzing these
requests, we found that, for our cases, this is due to: (1) the migration pro-
cess from another issue tracking system; and (2) several change requests
made by external users.

5. A growth in popularity (in terms of the number of stars) of the studied
projects (4/8 projects faced a fast or viral growth) when compared to the
top-2,500 most starred public projects on GitHub. We also identified a fast
growth of forks for 4 out of the 8 studied projects.

6. Although the studied projects present a fast growth of forks, only 6% of
the forks remained active (that is, were used to submit contributions).

2 https://github.com/about/press

https://github.com/about/press

4 Gustavo Pinto et al.

2 Related Work

In this section, we describe studies related to proprietary software projects
on GitHub, GitHub’s social features, social factors in the retention of new
developers, and the phenomenon of casual contributors.

Proprietary Software Projects on GitHub. Kalliamvakou et al. [22] ex-
amined how organizations with projects producing proprietary software use
GitHub, finding that these projects apply typical software development prac-
tices used in OSS projects, including reduced communication, independent
work, and self-organization. In our study, we also analyzed proprietary projects
that use GitHub; however, we are interested in those projects that became open
source, while Kalliamvakou and colleagues’ work focused on the use of GitHub
infrastructure to produce closed-source, proprietary software in private repos-
itories.

Community Building on GitHub. Many studies focus specifically on
GitHub’s social features, which allow developers to track each other’s activities
and thus form detailed impressions of their social and technical abilities and
behavior. Marlow et al. [28] found that developers form impressions of users
and projects based on signals (skills, relationships, etc.) in GitHub profiles.
Dabbish et al. [8] investigated the influence of transparency on the behavior
of GitHub participants and noticed that the number of watchers of a project
can serve as a social cue to attract developers. Similarly, Tsay et al. [51] found
that developers use both technical and social information to evaluate contri-
butions to open source software projects. Other than that, community size is
often evidenced as an indicator of an OSS project’s success. In their interviews
with maintainers of GitHub projects, McDonald and colleagues [30] found that
the features provided by GitHub are cited as one of the main reasons for the
increase in contributions and contributors to an OSS project. These studies fo-
cus on social coding environment features as drivers for attracting developers
and for generating signals that form impressions about projects and devel-
opers. However, they do not investigate how the migration to social coding
environments influences the onboarding of new members and the number of
contributions the projects receive.

Influence of Social Factors on newcomer retention. Some studies in
the literature focused on analyzing the influence of social factors on the re-
tention of new developers on OSS projects [19,20,24]. These studies analyzed
social networks (e.g., mailing lists) in order to understand (1) with whom new
developers collaborate; and (2) how the network evolves over the years. More-
over, Jensen et al. [18] analyzed four projects to understand if newcomers are
quickly responded to when they reach out the community, if their gender and
nationality impact the kind of answer that they receive, and if the treatment
they receive is similar to the ones that other members of the project received.
Although these studies focus on the relationship between social aspects and
the onboarding and retention of contributors, they do not analyze whether
social coding environments foster contributions to OSS projects.

On The Challenges of Open-Sourcing Proprietary Software Projects 5

Casual Contributors Phenomenon. Some papers explore the phenomenon
of casual contributors (or drive-by commits) in the context of social coding en-
vironments. Several authors have acknowledged the existence and the growth
of this behavior [14,35,36,37,52]. However, they do not analyze the migration
of projects to such environments.

3 Research Method

In this section, we describe our research question (Section 3.1), the studied
projects (Section 3.2), and the employed research approach (Section 3.3).

3.1 Research Question

To guide our research, we investigated the following important but overlooked
research question:

– RQ. What can companies expect when open-sourcing a proprietary soft-
ware project?

This broad research question is aimed at understanding factors such as: (1)
the joining and retention of new contributors in new open source communities;
(2) the level of activity before and after migration; and (3) the growth of
interest in these communities. Therefore, we studied several metrics related to
collaboration and popularity. The collaboration metrics studied are:

1. The number of newcomers that placed their first contribution to the project.
2. The number of active contributors in a given time window.
3. The number of source code contributions.
4. The number of pull requests received, merged, and closed.
5. The number of issues opened and closed.

These metrics are commonly found in the open source literature (e.g., [9,
37]). By “newcomer,” we mean those contributors who placed their first source
code contribution to a project, and who previously had not contributed to the
project. In this scope, a contributor is no longer considered a newcomer af-
ter placing their first contribution. We made no distinction between whether
newcomer’s contributions were intended to improve the source code, for docu-
mentation, or translate code. By “active contributor,” we mean a contributor
who placed at least one contribution during the time frame. We also studied
popularity metrics, including:

1. The number of stars.
2. The number of forks.

We chose these metrics because they describe how developers appreciate
or are interested in a given open source project [6,51]. These measures are
known as a proxy for project popularity, as they reflect the project’s activity
levels and developer interest. This is a common approach for selecting open
source projects to investigate [3,37,39].

6 Gustavo Pinto et al.

3.2 Selected Projects

In this study, we characterize our sample as multiple cases of popular pro-
prietary software systems that became open source at a given point in their
life-cycle. To define our sample, we searched for blog posts, newsletters, and
README files for evidence clearly indicating that a proprietary project open-
sourced its code. We imposed the sole restriction that the project must have
retained its software history, since only then could we compare our metrics be-
fore and after the transition. We found only 8 projects that met these criteria:

1. atom3, a cross-platform text editor. GitHub started its development in
2011, and open-sourced it in May 2014 [43]. It is mostly written in Coffee-
Script.

2. hhvm4, a virtual machine designed for executing programs written in Hack
and PHP. Facebook started its development in late 2009, and open-sourced
it in February 2010 [11]. It is mostly written in C++.

3. swift5, a new programming language. Developed by Apple, it was started
in July 2010, and was open-sourced in December 2015 [23]. It is mostly
written in C++ and Swift.

4. roslyn6 is the .NET Compiler, which provides code analysis APIs. Mi-
crosoft started its development in March 2014, and open-sourced it in
November 2014 on Codeplex. In 2015, roslyn moved to GitHub [7]. It
is mostly written in C# and Visual Basic.

5. storm7, a distributed realtime computation system. Twitter started its
development in 2010, and open-sourced it in September 2011 [29]. Later
on, storm moved again to an Apache repository. It is mostly written in
Java.

6. zulip8 is a group chat. Dropbox started its development in August 2012,
and open-sourced it in September 2015 [1]. It is mostly written in Python
and JavaScript.

7. hubot9 is a customizable life-improvement robot. GitHub started its de-
velopment in August 2011, and open-sourced it in October 2011 [10]. It is
mostly written in CoffeeScript.

8. plotly.js10 (plotly for short), is a high-level, declarative charting library.
Plotly (the company) started its development in June 2012, and open-
sourced it in November 2015 [38]. It is entirely written in JavaScript.

These projects are relevant along different dimensions [32] (data collected
on July-2016):

3 https://github.com/atom/atom/
4 https://github.com/facebook/hhvm/
5 https://github.com/apple/swift/
6 https://github.com/dotnet/roslyn/
7 https://github.com/apache/storm
8 https://github.com/zulip/zulip
9 https://github.com/github/hubot

10 https://github.com/plotly/plotly.js

https://github.com/atom/atom/
https://github.com/facebook/hhvm/
https://github.com/apple/swift/
https://github.com/dotnet/roslyn/
https://github.com/apache/storm
https://github.com/zulip/zulip
https://github.com/github/hubot
https://github.com/plotly/plotly.js

On The Challenges of Open-Sourcing Proprietary Software Projects 7

– Popular : These projects have, on average, 14.5K stars on GitHub (max:
32K, min: 3K), and more than 2.4K forks (max: 5K, min: 410).

– Non-Trivial : Most of the projects have hundreds of thousands of lines of
code (Max: 498K, Min: 2K, Mean: 241.5K). Five out of the eight studied
projects use more than one programming language. On average, they have
about 5 years of historical records.

– Active : These projects received an of average 429 contributions over the
last 12 months (Max: 940, Min: 23), with an average of 64 Pull requests
(PRs) per month. These contributions are performed by more than 1,289
different source-code contributors.

– Diverse : They span different domains, varying from text editors, graphic
frameworks, programming languages, and virtual machines. Yet, they are
written in different programming languages, including Java, C++/C#,
JavaScript, and CoffeeScript.

Table 1 summarizes the characteristics of the studied software projects.
We used the cloc utility to calculate the Lines of Code (LOC). It includes
code from all the languages in which a project was developed, as well as blank
lines and commented lines. plotly has the greatest number of lines of code
(498K), whereas hhvm has the greatest number of unique contributors (467),
swift has the greatest number of commits (35K), and roslyn has the greatest
number of PRs (4K). With regard to their popularity, swift has the highest
number of stars (32K), and atom has the highest number of forks (5K). hhvm
and swift are the oldest (6 years of software development each). Finally, as
we can see in this table, some projects lack issues data. This is because the
projects swift and storm, although hosted on GitHub, do not use GitHub’s
issue tracking system. Figure 1 depicts each distribution.

Table 1 The diversity of our selected projects. LoC means Lines of Code. PR means Pull
requests. Age is presented in years. (Data collected in July-2016)

P
ro

je
c
ts

L
o
C

C
o
m
m
it
te

rs

C
o
m
m
it
s

Is
su

e
s

P
R
s

S
ta

rs

F
o
rk

s

A
g
e

atom 51K 272 28K 8K 2K 29K 5K 5
hhvm 131K 467 17K 5K 2K 13K 2K 6
swift 406K 251 35K — 3K 32K 5K 6
roslyn 97K 140 11K 5K 5K 5K 1K 2
storm 352K 257 6K — 1K 3K 2K 5
hubot 119K 122 12K 562 632 11K 2K 4
zulip 2K 232 2K 583 640 4K 758K 5
plotly 498K 74 10K 384 346 5K 506 4

8 Gustavo Pinto et al.

0 5 10 15 20 25 30 35

Occurrences (in thousand)

C
om

m
itt
er

s

C
om

m
its

PR
s

Sta
rs

Fo
rk

s

Age

Fig. 1 Selected projects. The number of occurrences are presented in thousands, except
‘Age’.

3.3 Research Approach

We conducted a two-step approach: investigating data and meta-data of the
studied projects; and employing questionnaires seeking additional evidence.

3.3.1 Collecting Data From the Repositories

For each studied software project, we used the GitHub API to collect the
following projects’ characteristics:

– The number of newcomers that have joined the project over time, number
of contributions (i.e., commits) to the project, and the number of active
contributors in a given time window.

– The number of pull requests that are either opened, closed, or merged.
– The number of issues that are either opened or closed.
– The number of stars and forks.

Next, we compared the distributions of each collected metric with respect
to the migration phases of the studied projects. In order to verify whether
the migration is associated with an impact on the collaboration metrics, we
compared the number of newcomers of a project before and after its migration
to open source. We were unable to apply this approach to the popularity
metrics (stars and forks), since the selected projects do not have representative

On The Challenges of Open-Sourcing Proprietary Software Projects 9

data before the transition to GitHub. We used a disambiguation technique
proposed [4] to match users with different email addresses.

3.3.2 Survey Design and Application

After collecting and analyzing the data from the repositories, we designed a
survey aimed at gathering further insights. Based on the recommendations of
Kitchenham et al. [25], we followed the prescribed phases: planning, creating
the questionnaire, defining the target audience, evaluating, conducting the
survey, and analyzing the results. Before sending the survey, we discussed the
three general questions with two specialists. The feedback obtained from this
discussion helped us to better clarify and rephrase some questions.

We sent our questionnaire by creating issues in the issue tracker of the
projects on GitHub. This approach works as an effective feedback loop between
the survey authors and the survey respondents, making it easy to further
clarify questions. For the projects that do not use the issue-tracking system
(or do not use it for the purpose of posing questions), we sent the questionnaire
to their official mailing lists. The URLs for the questionnaires are presented
in Table 2. For each project, we opened one issue. Since we used GitHub
issues as a means to deliver the questionnaire, we employed a criterion to
check the credibility of the respondents. We inspected the list of contributors
of each project to verify whether the respondent was indeed active in the
project, and found that all participants in our survey were indeed active project
contributors.

Table 2 URL for the questionnaires submitted to each project

Project Sent via URL
atom Mailing list http://bit.ly/2poYuYT

hhvm Issue tracker https://github.com/facebook/hhvm/issues/7122

swift Mailing list http://bit.ly/2poSFKZ

roslyn Issue tracker https://github.com/dotnet/roslyn/issues/11714

storm Mailing list http://bit.ly/2ptfkXq

hubot Issue tracker https://github.com/hubotio/hubot/issues/1244

zulip Issue tracker https://github.com/zulip/zulip/issues/1968

plotly Issue tracker https://github.com/plotly/plotly.js/issues/712

Survey Design. Our survey had three main questions.

Question 1: What motivated the project to open its source code on
GitHub? How do you evaluate the benefits of this migration?

In our first question, we were motivated to understand the main reasons
why our studied projects became open source. Although one might reasonably
believe that opening the source code at GitHub would have clear benefits, (e.g.,
using a decentralized version control system), we believe that asking developers
might also uncover reasons that are not straightforward to hypothesize. We

http://bit.ly/2poYuYT
https://github.com/facebook/hhvm/issues/7122
http://bit.ly/2poSFKZ
https://github.com/dotnet/roslyn/issues/11714
http://bit.ly/2ptfkXq
https://github.com/hubotio/hubot/issues/1244
https://github.com/zulip/zulip/issues/1968
https://github.com/plotly/plotly.js/issues/712

10 Gustavo Pinto et al.

asked whether they perceived any benefits from this migration process and, if
so, how they evaluate our data.

Question 2: Does this snapshot make sense? Did you find any inconsistency
in the data?

For each project contacted, we also attached an overview figure (the same
one presented in Figure 2) describing the evolution of the project in terms of
the number of newcomers, active contributors, and contributors. This question
aims to validate our data collection procedure. As we shall see in Section 6, it
is not always possible to differentiate contributors, particularly when moving
from a centralized to a decentralized version control system.

Question 3: Do you have any internal policies to promote/attract/retain
new contributors? If so, do they succeed?

In our third question, we intended to discover whether the selected projects
maintain any internal policy to deal with newcomers. This question is partic-
ularly relevant to our group of studied projects, since their popularity, along
with GitHub’s social features, make them suitable for attracting new contrib-
utors. This question also aimed to revalidate one of the findings of a recent
study, which suggests that project maintainers fail to encourage new contrib-
utors [37].

In addition to these three general questions posed to all studied projects,
we also asked questions specifically designed for each project. These context-
specific questions aimed at understanding the reasons behind trends observed
in the figures (URLs for the questionnaires are available in Table 2). For in-
stance, in issue #196811, which we opened for zulip, we asked two additional
questions:

Question 4: Why did the number of active contributors and contributions
decrease shortly after the project became open source?
Question 5: Why is there a new pick of contributors some months after
the migration to GitHub? Is it related to any release?

During a period of over 30 days, we received answers for 7 out of 8 projects
for which issues were opened. However, only 5 answered issues were selected for
analysis; these issues received a total of 14 comments from 11 project members.
The remaining two issues were discarded, because the answers did not help
us at better understanding, confirming, or refuting the challenges related to
the transition to open source. For instance, one respondent said that he was
“dealing with aftermath of Hurricane Matthew, and only working part-time as
part of my paternity leave.”

We found that not only were our respondents active project members, but
those for projects plotly.js, zulip, and hubot were the most active. For

11 https://github.com/zulip/zulip/issues/1968

https://github.com/zulip/zulip/issues/1968

On The Challenges of Open-Sourcing Proprietary Software Projects 11

the remaining projects, the top respondents varied from the 15th most active
(hhvm) to the 27th most active (roslyn). The average number of contributions
per respondent was 1,012 (median: 181, min: 8, max: 5,158, standard deviation:
1,818.24). By checking their affiliation information, we found that the top
respondents from hhvm, atom, hubot, plotly, and zulip were staff members.
For the roslyn project, only one respondent was affiliated with Microsoft
(the other two did not show any affiliation). These facts might increase the
trustworthiness of the responses.

To compile the survey results, we qualitatively analyzed the answers fol-
lowing coding procedures [48]. The qualitative analysis was conducted inde-
pendently by the first two authors, followed by a consensus meeting. However,
due to the small number of comments and codes that emerged, we could not
bring interesting insights based on the analysis; they were (1) expressed in a
single the project or (2) very specific. Therefore, instead of introducing the
categories and discussing them, we opted to make use of some quotes through-
out the paper as a way to enrich some of the findings from our quantitative
analysis.

4 Results

In this section, we discuss the results of our main research question. We orga-
nize our findings in terms of Contributors and Contributions (Section 4.1), Pull
Requests (Section 4.2), Issues (Section 4.3), and Stars & Forks (Section 4.4).

4.1 Contributors and Contributions

In order to provide a comprehensive overview of our dataset, Figure 2 presents
a temporal perspective of the different contribution characteristics: the red
solid line represents the number of active contributors in the particular time
window; the green dotted line represents the number of new contributors that
onboarded the open source project; and the blue dotted line represents the
number of contributions performed. Contributions can be performed in terms
of both commits and pull requests. The vertical black dotted line indicates
when the project became open source. Projects storm and rosyln have two
vertical lines, because they were initially open-sourced in one repository, but
were later on moved to another. The time frame for each plot is one month.

Newcomers Wave. We observed that some of the analyzed proprietary
projects had the potential to attract a non-trivial number of new contributors
right after becoming open source, an observation that we call the “newcom-
ers wave.” That is, a high number of new contributors effectively placed a
contribution soon after the project open-sourced, but disappeared a few com-
mits later. This wave can be seen in several projects, such as atom, swift,
hubot, and roslyn. On the other hand, projects storm and hhvm took several
months to recruit a steady flow of new source code contributors. On average,

12 Gustavo Pinto et al.

Atom HHVM

20
11

20
12

20
13

20
14

20
15

20
16

Years

0

50

100

150

200

250

Co

nt
rib

ut
or
s /
 N
ew

co
m
er
s

M
ig
ra
te
d

0

500

1000

1500

2000

2500

Co

nt
rib

ut
io
ns

Contributions
Contributors
Newcomers

20
10

20
11

20
12

20
13

20
14

20
15

20
16

Years

0

50

100

150

200

250

Co

nt
rib

ut
or
s /
 N
ew

co
m
er
s

M
ig
ra
te
d

0

500

1000

1500

2000

2500

Co

nt
rib

ut
io
ns

Contributions
Contributors
Newcomers

Swift Roslyn

20
10

20
11

20
12

20
13

20
14

20
15

20
16

Years

0

50

100

150

200

250

Co

nt
rib

ut
or
s /
 N
ew

co
m
er
s

M
ig
ra
te
d

0

500

1000

1500

2000

2500

Co

nt
rib

ut
io
ns

Contributions
Contributors
Newcomers

20
14

20
15

20
16

Years

0

50

100

150

200

250

Co

nt
rib

ut
or
s /
 N
ew

co
m
er
s

M
ig
ra
te
d

M
ov
ed

 to
 G
itH

ub

0

500

1000

1500

2000

2500

Co

nt
rib

ut
io
ns

Contributions
Contributors
Newcomers

Storm Plotly

20
11

20
12

20
13

20
14

20
15

20
16

Years

0

50

100

150

200

250

Co

nt
rib

ut
or
s /
 N
ew

co
m
er
s

M
ig
ra
te
d

Ch
an

ge
d
re
po

sit
or
y

0

500

1000

1500

2000

2500

Co

nt
rib

ut
io
ns

Contributions
Contributors
Newcomers

20
12

20
13

20
14

20
15

20
16

Years

0

50

100

150

200

250

Co

nt
rib

ut
or
s /
 N
ew

co
m
er
s

M
ig
ra
te
d

0

500

1000

1500

2000

2500

Co

nt
rib

ut
io
ns

Contributions
Contributors
Newcomers

Zulip Hubot

20
12

20
13

20
14

20
15

20
16

Years

0

50

100

150

200

250

Co

nt
rib

ut
or
s /
 N
ew

co
m
er
s

M
ig
ra
te
d

0

500

1000

1500

2000

2500

Co

nt
rib

ut
io
ns

Contributions
Contributors
Newcomers

20
11

20
12

20
13

20
14

20
15

20
16

Years

0

50

100

150

200

250

Co

nt
rib

ut
or
s /
 N
ew

co
m
er
s

M
ig
ra
te
d

0

500

1000

1500

2000

2500

Co

nt
rib

ut
io
ns

Contributions
Contributors
Newcomers

Fig. 2 A temporal perspective of the number of contributors that onboarded in the project,
active contributors, and contributions. The vertical dotted line in each chart indicates when
the studied project open-sourced its source code at GitHub.

our studied projects faced a rate of 77.56 new contributors per year. In par-
ticular, project hhvm leads the group with a rate of 155 newcomers per year.
Similarly, the swift programming language attracted more than 140 newcom-
ers in only its first month after becoming open source. On the other hand,
project plotly presents a rate of 11.75 new source code contributors per year.
Figure 3 shows the average number of newcomers per month, considering four
different time windows: the beginning of the project up to 6 months prior to
open sourcing (“Initial” bar), the 6 months before open sourcing (“Before”
bar), the 6 months after open sourcing (“After” bar), and the period after
the 6 initial months after open sourcing (“Final” bar). As we can see, for all
projects except hhvm and zulip, the majority of newcomers onboard 6 months

On The Challenges of Open-Sourcing Proprietary Software Projects 13

after open sourcing. The swift project has no “final” bar because we collected
data up to the fourth month after open sourcing.

Initial
Before
After
Final

Studied Projects

#
 n

e
w

c
o

m
m

e
rs

/m
o

n
th

0
1

0
2

0
3

0
4

0
5

0

atom hhvm roslyn storm hubot swift zulip plotly

Fig. 3 The average number of newcomers per month, considering four different time win-
dows: the beginning of the project up to 6 months prior to open sourcing (“initial”), the
6 months before open sourcing (“before”), the 6 months after open sourcing (“after”), and
the period after the 6 initial months after open sourcing (“final”).

Discussion. We believe there are two explanations for this behavior. First,
since the number of newcomers shortly decreased a few weeks after the mi-
gration process, most of these contributors can be considered casual contribu-
tors [37]: that is, contributors that do not want to become active members of
the project, but nevertheless want to contribute. For instance, taking into con-
sideration project roslyn, we found 62 (44%) contributors that made only one
contribution. Projects atom, swift, and hubot evidenced a total of, respec-
tively, 173 (63%), 193 (76%), and 89 (72%) casual contributors. By compari-
son, in a previous study, we identified that casual contributors account for up
to 61% of the contributors of open source projects written in JavaScript [37].
One respondent highlighted the importance of such contributions: “My con-
tributions may not be big but I still feel that they are appreciated. Especially if
they are for parts of the repo that the team members may have forgotten about,
needed dusting off and shown some love.”

These contributors seem to be a particular kind of casual contributor: they
want to contribute to well-known projects, probably as a means to gain vis-
ibility among their peers. In fact, due to the public visibility of actions on
GitHub, developers who made casual contributions to different (non-trivial)
open source projects might be seen as experienced developers. Recent litera-
ture suggests that gaining reputation and prestige are among the main rea-
sons for contributing to open source projects [8,16,33]. However, retention is
still an issue: for project hubot, only 18.5% of newcomers contributed more
than once (36.3% for atom). Second, the contrasting numbers of contributors
among the studied projects might be explained in terms of popularity. The
swift programming language not only counts with Apple to promote its us-

14 Gustavo Pinto et al.

age, but is also specifically designed for mobile apps, which are facing a growth
themselves [41]. These key reasons may make swift particularly attractive to
newcomers. In fact, 58 (34%) swift contributors contributed more than once.

Welcoming newcomers. According to the responses to our survey, one of
the motivations for open-sourcing a software project is to allow external de-
velopers to (re)use the software. For instance, one respondent mentioned that
“The software was not being actively developed by its owners, but it had many
users who wanted to continue using and improving the software.” In order to
ease the contribution process, GitHub has an official set of guidelines for those
interested in launching an open source project12. According to the guidelines,
every open source project should include the following documentation: (1) an
open source license; (2) a README file; (3) a contributing guidelines file; and
(4) a code of conduct file. As stated on the website, “as a maintainer, these
components will help you communicate expectations, manage contributions,
and protect everyone’s legal rights (including your own). They significantly in-
crease your chances of having a positive experience.” Analyzing the studied
projects, we found that although all of them include a README file, projects
zulip and storm lacked a contributing file, and projects atom, storm, plotly,
and hhvm lacked a code of conduct file.

Discussion. These contributing and code of conduct files are important,
because they tell potential new contributors: (1) how to participate in the
project; and (2) how to behave in open source communities. Although lack-
ing such files might make it harder to contribute or even participate in open
source projects [50], some studied projects did not provide them. Still, while
these files are important, other approaches can achieve the same or even bet-
ter results. To welcome newcomers, one respondent said that she “try[s] to
be super responsive to new contributors on GitHub. [...] We also have the
zulip.tabbott.net community server, which makes it easy for new contributors
to get realtime help.”. Any type of onboarding support requires time and ef-
fort, amounting to a hidden cost that may be non-trivial for welcoming new
contributors; as the same respondent complemented “we’ve invested a huge
amount of effort into in making Zulip’s development environment really easy
to setup and use compared to other large webapps.” Such efforts might pay off
in the long-term, as the respondent reflected: “I feel that open-sourcing Zulip
has been a huge success, since the open source project is now moving faster
than Zulip was moving when it had 11 fulltime engineers as a startup prior to
the Dropbox acquisition.”

The rise of contributions. We found that for three out of the eight studied
projects, the number of contributions significantly increased. In particular,
projects swift, plotly, and roslyn faced the highest rise in contributions.
In particular, the roslyn project presents a steep uptick in activity, as the
project moved from proprietary to open source. Moreover, we believe it is
too early to consider this an effective example of the rise of contributions (it
became open source at the end of 2015). On the other hand, project plotly

12 https://opensource.guide/starting-a-project/#launching-your-own-opensource-project

https://opensource.guide/starting-a-project/#launching-your-own-open source-project

On The Challenges of Open-Sourcing Proprietary Software Projects 15

seems to maintain the same contribution curve, with a significant increase in
the number of newcomers. Interestingly, none of the studied projects faced a
decrease in the number of contributions.

Discussion. Although some projects faced an increase in the number of
contributors, one respondent drew attention to the fact that “while the number
of overall committers has grown, the size of the team of maintainers who review
and approve PRs has remained relatively static. This puts a cap on the amount
of code that can be accepted into the project per unit of time no matter how
many committers there are.” Therefore, the lack of manpower is a serious
challenge that these companies ought to address.

4.2 Pull Requests

Regarding PR usage, Figure 4 shows the number of PRs opened, closed, and
merged over time. Since most of the projects did not use GitHub during their
proprietary life-cycle, we cannot compare the rise of pull requests before and
after the migration process. However, project atom was developed as a propri-
etary project on a GitHub private repository. For this project, we found that
the number of pull requests increased 2.4 times after the transition. Since pull
requests are the main way that external contributors submit changes to the
main repository, we also observe the “newcomers wave” for PRs in the atom

figure. In addition, we can observe that the number of merged pull requests
of the studied projects is, on average, 80%. This suggests that the analyzed
projects are willing to receive and incorporate contributions from external
members, which is not always the case in open source projects (e.g., [9,14]).
On the other hand, project hhvm merged only 4.0% of the submitted pull re-
quests. When manually analyzing a random sample of 50 pull requests, we
found that hhvm does not use GitHub’s pull request merge system. In fact, the
pull requests are merged locally, through git command-line facilities (e.g., PR
#32213).

One might argue that pull requests are not restricted to external mem-
bers: internal members can also provide pull requests to their own software
projects. To better understand this behavior, we conducted another round of
manual analysis aimed at investigating: (1) whether these contributions were
indeed from external members; and (2) what were the reasons for pull request
acceptance, in particular, proposed by external members. To provide answers
to these questions, we focused on projects atom and hubot. We chose these
projects because they were created and maintained by GitHub and, therefore,
employ GitHub features that can differentiate internal and external members.

To answer whether these contributions were indeed originated from
external members, we verified the pull requests to check whether the submit-
ter had the flag site admin enabled. If enabled, this flag promotes an ordinary
user to a site administrator. According to GitHub official documentation, a

13 https://github.com/facebook/hhvm/pull/322

https://github.com/facebook/hhvm/pull/322

16 Gustavo Pinto et al.

HHVM Atom

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Years

0

100

200

300

400

500

600

700

800

#O
cc
ur
re
nc
es

M
ig
ra
te
d

Opened
Closed
Merged

20
12

20
13

20
14

20
15

20
16

20
17

Years

0

100

200

300

400

500

600

700

800

#O
cc
ur
re
nc
es

M
ig
ra
te
d

Opened
Closed
Merged

Storm Roslyn

20
13

20
14

20
15

20
16

20
17

Years

0

100

200

300

400

500

600

700

800

#O
cc
ur
re
nc
es

M
ig
ra
te
d

Ch
an

ge
d
re
po

sit
or
y

Opened
Closed
Merged

20
14

20
15

20
16

20
17

Years

0

100

200

300

400

500

600

700

800

#O
cc
ur
re
nc
es

M
ig
ra
te
d

M
ov

ed
 to

 G
itH

ub

Opened
Closed
Merged

Plotly Swift

20
15

20
16

20
17

Years

0

100

200

300

400

500

600

700

800

#O
cc
ur
re
nc
es

M
ig
ra
te
d

Opened
Closed
Merged

20
15

20
16

20
17

Years

0

100

200

300

400

500

600

700

800

#O
cc
ur
re
nc
es

M
ig
ra
te
d

Opened
Closed
Merged

Zulip Hubot

20
15

20
16

20
17

Years

0

100

200

300

400

500

600

700

800

#O
cc
ur
re
nc
es

M
ig
ra
te
d

Opened
Closed
Merged

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Years

0

100

200

300

400

500

600

700

800

#O
cc
ur
re
nc
es

M
ig
ra
te
d

Opened
Closed
Merged

Fig. 4 Number of pull requests opened (red lines), closed (blue lines) and merged (green
lines).

site administrator can “manage high-level application and VM settings, all
user and organization account settings, and repository data.”14 We consider
such site administrators as internal members, and the other pull request au-
thors as external members. From the total of 3,297 pull requests submitted
to atom, 1,548 of them (47%) were submitted by external members. Regard-
ing pull request acceptance, we found that 947 (37.5%) of the pull requests
submitted by external members were, in fact, accepted. More interestingly, we
found that 82% (557) of the pull requests submitted to hubot were submitted
by external members; and that 75.8% of them were accepted. Table 3 summa-
rizes the total number of accepted (merged) and unaccepted (unmerged) pull

14 https://enterprise.github.com/security

https://enterprise.github.com/security

On The Challenges of Open-Sourcing Proprietary Software Projects 17

requests, divided by internal and external members. Finally, we also investi-
gated whether the core members of these two projects comprised internal or
external members. For atom, we found only 2 out of the 20 top contributors
to be external members. However, for hubot 13 out of the 20 top contributors
were external members. These findings corroborate with the main finding of
this section: when transitioning to open source, such software projects might
be willing to receive and incorporate changes provided by external members.

Table 3 Summary of pull requests acceptance for projects atom and hubot. “Internal”
means “Internal member” while “External” means “External member”. (Data collected in
June-2017)

Submitted Accepted Not Accepted
Total Internal External Internal External Internal External

atom 3,397 1,749 1,548 1,582 947 167 601
hubot 679 122 557 114 356 8 201

To answer what are the reasons for pull request acceptance, we stud-
ied a random sample of 334 pull requests accepted at atom. This sample size
provides a confidence level of 95% with a ±5% confidence interval. We also
validated this experiment with another manual analysis in a random sample
of 150 pull requests accepted at hubot. For the atom project, before creating
a pull request, internal members create an issue that describes the project
needs. Therefore, most of the pull requests proposed are accepted, because in-
ternal members expect them. However, external members can also propose pull
requests that scratch their own itches [37], which are contributions intended
to solve developers own problems. Pull requests that fix documentation prob-
lems are the most common. Examples include: broken URLs,15 not enough
information,16 and code comments.17 Contributions from external members
are shorter than internal ones; as noted elsewhere, smaller changes can reduce
the chance of breaking the continuous integration build [42]. Notwithstand-
ing, non-trivial code changes often come with a detailed description (images
are common). However, all pull requests are subject to a rigorous code review
process. We found a similar pattern for hubot. Most of the pull requests from
external members were related to documentation issues,18 although complex
code changes existed.19 Finally, these two projects seem to welcome external
users: they not only answer most of the requests from external members, but
also guide their contributions to an acceptable state.

15 https://github.com/atom/atom/pull/1929
16 https://github.com/atom/atom/pull/2602
17 https://github.com/atom/atom/pull/8452
18 https://github.com/hubotio/hubot/pull/788
19 https://github.com/hubotio/hubot/pull/489

https://github.com/atom/atom/pull/1929
https://github.com/atom/atom/pull/2602
https://github.com/atom/atom/pull/8452
https://github.com/hubotio/hubot/pull/788
https://github.com/hubotio/hubot/pull/489

18 Gustavo Pinto et al.

4.3 Issues

Figure 5 shows the number of issues created and closed during the analysis
period. This figure does not show projects swift and storm, because these
projects do not use GitHub’s issue tracking system.

HHVM Atom

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Years

0

100

200

300

400

500

#O
cc
ur
re
nc
es

M
ig
ra
te
d

Opened
Closed

20
12

20
13

20
14

20
15

20
16

20
17

Years

0

100

200

300

400

500

#O
cc
ur
re
nc
es

M
ig
ra
te
d

Opened
Closed

Plotly Roslyn

20
15

20
16

20
17

Years

0

100

200

300

400

500

#O
cc
ur
re
nc
es

M
ig
ra
te
d

Opened
Closed

20
14

20
15

20
16

20
17

Years

0

100

200

300

400

500

#O
cc
ur
re
nc
es

M
ig
ra
te
d

M
ov
ed

 to
 G
itH

ub

Opened
Closed

Zulip Hubot

20
15

20
16

20
17

Years

0

100

200

300

400

500

#O
cc
ur
re
nc
es

M
ig
ra
te
d

Opened
Closed

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Years

0

100

200

300

400

500

#O
cc
ur
re
nc
es

M
ig
ra
te
d

Opened
Closed

Fig. 5 Number of issues opened (red lines), and closed (blue dotted lines).

As we can see in this figure, for the studied projects there are two different
issue tracker usage patterns: in the first, which includes projects hhvm and
atom, the number of issues starts small and suddenly increases; and, in the
second, which includes projects plotly and roslyn, they start by creating a
high number of issues, and then plateau shortly after. In the first case, since
projects hhvm and atom started their development as a private repository on
GitHub, they used issues from their very beginning. After their transition
to open source, it is likely that the increased number of issues was related
to external users reporting bugs or requesting features. Similarly, projects
plotly and roslyn faced a high number of issues being created soon after
they migrated to a public repository in GitHub.

To further understand this behavior, we conducted two rounds of manual
analysis on the roslyn project. For the first round, we investigated the first

On The Challenges of Open-Sourcing Proprietary Software Projects 19

50 issues created shortly after the migration to GitHub. For the second round,
we randomly selected a sample of 50 issues from a group of ∼730 issues that
were opened in the first three months after the migration to GitHub. Among
the first 50 issues, we found that 46 were labeled either as “Feature Request”
(e.g., Issue #1420) or “Bug” (e.g., Issue #2321). For the random sample of
issues, we found 17 feature requests and 22 bug reports. These two findings
corroborate our initial belief that software companies planning to open-source
their software projects might expect an increased activity on the issue tracking
system.

4.4 Stars & Forks

In this section, we provide results for two popularity metrics: the number of
stars and forks. GitHub offers a feature that allows one to express interest in
a project by “starring” [13]. Figure 6 shows the growth of stars.

Swift Atom HHVM

Weeks

S
u
m

0 20 40 60

0
K

1
0
K

2
0
K

3
0
K

4
0
K

Swift

Weeks

S
u
m

0 50 100 150 200 250

0
K

1
0
K

2
0
K

3
0
K

4
0
K

Atom

Weeks

S
u
m

0 50 100 150 200 250 300 350

0
K

1
0
K

2
0
K

3
0
K

4
0
K

HHVM

Storm Roslyn Zulip

Weeks

S
u
m

0 50 100 150 200 250

0
K

1
0
K

2
0
K

3
0
K

4
0
K

Storm

Weeks

S
u
m

0 20 40 60 80 100

0
K

1
0
K

2
0
K

3
0
K

4
0
K

Roslyn

Weeks

S
u
m

0 20 40 60 80

0
K

1
0
K

2
0
K

3
0
K

4
0
K

Zulip

Hubot Plotly

Weeks

S
u
m

0 50 100 150 200 250

0
K

1
0
K

2
0
K

3
0
K

4
0
K

Hubot

Weeks

S
u
m

0 20 40 60

0
K

1
0
K

2
0
K

3
0
K

4
0
K

plotly

Fig. 6 The growth of stars. The line represents accumulative data. We sum up data from
the two Storm repositories.

20 https://github.com/dotnet/roslyn/issues/14
21 https://github.com/dotnet/roslyn/issues/23

https://github.com/dotnet/roslyn/issues/14
https://github.com/dotnet/roslyn/issues/23

20 Gustavo Pinto et al.

As this figure shows, the studied projects exhibit different growth patterns.
We employed the same growth patterns proposed by Borges et al. [5], which
encompasses slow, moderate, fast, and viral growth. We found that swift was
the only project that presented a viral growth, receiving about 19,000 stars
in a single week. Projects atom, plotly, and zulip presented a fast growth,
receiving, respectively, 5,500, 3,500, and 3,000 stars in the first month. On the
other hand, projects roslyn, hubot, hhvm, and storm presented a moderate
growth. When compared to the top 2,500 most starred public projects on
GitHub, we noticed that our selected projects presented a fast growth pattern
— according to Borges et al. [5], 65.7% of the most starred projects presented
a slow growth. This might suggest that these new open source projects succeed
in attracting attention from external developers.

Similarly, the fork feature unifies the contribution process [14] and can in-
dicate popularity. GitHub users interested in contributing to the project must
first fork the project (that is, clone it), before implementing and submitting
the changes back to the main repository. If a developer is only interested in
using the project – not contributing to it – there is no need to fork it. Indeed,
as a recent study suggests, 46% of the surveyed developers use the fork system
to submit pull requests; only 9% keep copies for themselves [21]. In this sense,
the number of forks can be a proxy to the number of GitHub users willing to
contribute to the project. Figure 7 presents the growth of forks.

This figure shows a similar behavior when compared to Figure 6. As we
can see, although on a smaller scale, the swift project presents a viral growth,
whereas atom, plotly, and zulip present a fast growth, and the remaining
ones present a moderate growth. Indeed, in most cases, there is a strong pos-
itive correlation between stars and forks. To interpret correlation, we used
the thresholds from Hopkins [17]: for Spearman rho, |rho| < 0.3 indicates
small correlation, 0.3 > |rho| < 0.5 indicates medium correlation, and |rho|
> 0.5 indicates strong correlation. Projects swift, zulip, and plotly present
a Spearman correlation of, respectively, 0.996, 0.974, 0.940, with a p-value <
0.001 for all of them. This result is in line with recent studies [3,49], which
reinforces the importance of a large base of contributors to the success of these
projects.

Interestingly, none of the analyzed projects have more forks than stars.
We believe that is because the fork is a contribution feature; that is, when
one intends to make changes to a given project, they first must fork it. As
a result, developers that fork a project tend to take a more active role in it.
Furthermore, of the 21,352 forks in this data-set, only 1,281 (6%) had at least
one additional commit. This result is in line with a recent study [34] that
indicates that a majority of forks are stubs. Figure 8 shows the percentage of
forks per project that performed additional contributions.

This result suggests that, although our studied projects presented a fast
growth of stars, more effort is still required to motivate external developers to
contribute to the original project.

On The Challenges of Open-Sourcing Proprietary Software Projects 21

Swift Atom HHVM

Weeks

S
u
m

0 10 20 30 40

0
K

1
K

2
K

3
K

4
K

5
K

Swift

Weeks

S
u
m

0 50 100 150 200

0
K

1
K

2
K

3
K

4
K

5
K

atom

Weeks

S
u
m

0 50 100 150 200 250 300

0
K

1
K

2
K

3
K

4
K

5
K

HHVM

Storm Roslyn Zulip

Weeks

S
u
m

0 20 40 60 80 100 120 140

0
K

1
K

2
K

3
K

4
K

5
K

Storm

Weeks

S
u
m

0 10 20 30 40 50 60 70

0
K

1
K

2
K

3
K

4
K

5
K

Roslyn

Weeks

S
u
m

0 10 20 30 40

0
K

1
K

2
K

3
K

4
K

5
K

Zulip

Hubot Plotly

Weeks

S
u
m

0 50 100 150 200

0
K

1
K

2
K

3
K

4
K

5
K

hubot

Weeks

S
u
m

0 10 20 30 40

0
K

1
K

2
K

3
K

4
K

5
K

Plotly

Fig. 7 The growth of forks. The line represents accumulative data. We sum up data from
the two Storm repositories.

5 Additional Discussion

In this section, we summarize the challenges found and discuss some implica-
tions of this work.

5.1 Challenges

Our study reveals distinct challenges of open-sourcing a proprietary software
project. Some of them are discussed below.

– It is hard to retain new contributors. Although numerous works study
developer onboarding and retention (e.g., [44,45,46]), this paper adds an-
other perspective. We found that even though some projects faced a high
number of newcomers onboarding right after their transition to open source
(77.56 new contributors per year, on average), most of these newcomers
abandon the project a few commits later. For instance, for hubot in par-
ticular, only 18% of the newcomers contributed more than once. Still, al-
though guidelines exist for welcoming newcomers, we found that not all

22 Gustavo Pinto et al.

a
to

m

h
h

v
m

ro
s
ly

n

s
to

rm

s
w

if
t

p
lo

tl
y

h
u

b
o

t

z
u

lip

%
 o

f
A

c
ti
ve

 F
o

rk
s

0

2

4

6

8

10

12

14

Fig. 8 The percentage of active forks per analyzed project.

studied projects follow them. Ad hoc approaches, such as using chats for
synchronous help or increasing responsiveness, were also perceived as useful
(Section 4.1).

– Maintainers might expect a high volume of work after going open
source. Because of the newcomers wave phenomenon, in addition to the
work needed to make the environment easy to set up and use prior to
open-sourcing (Section 4.1), project maintainers should also find the time
to properly review each one of the proposed contributions and give feedback
to contributors (as a study participant said: “While the number of overall
committers has grown, the size of the team of maintainers who review and
approve PRs has remained relatively static.”). We also observed that in
the first weeks after open-sourcing external developers are fairly active
using the issue tracking system to propose new features and spot bugs
(Section 4.3). The challenge here relates to the amount of work required to
deal with the community’s needs, which might not always align with the
project’s needs. Therefore, projects interested in going open source might
expect overhead for managing issues and code reviews.

– Many forks do not translate into actual contributions. Although
many forks were created (atom itself has ∼5K forks), a minority of them
are active (from the 21,352 forks in this data-set, only 1,281 (6%) had
at least one additional commit). To make matters worse, when analyzing
the active forks, we revealed that patch non-acceptance is a challenge for
external members (only 37.5% of the pull requests submitted by external
members were accepted). Furthermore, few of those external members that
successfully have a patch accepted contribute with source code changes (the
majority contribute with documentation files).

On The Challenges of Open-Sourcing Proprietary Software Projects 23

5.2 Implications

This research could offer significant insights and implications for different
stakeholders, including two groups discussed below.

Researchers. This study introduces the possibility of a new set of research
topics related to open-sourcing proprietary code. For instance, it would be in-
teresting to understand what drives developers to contribute to these projects.
Another area that can be explored is how companies take advantage of the
flow of contributors; e.g., do they use it as a “recruitment tool,” or are they
simply trying to build a sustainable open source community? Since there is
discrepancy between the number of contributors and maintainers, researchers
can investigate mechanisms to ease source code review (for instance, fast-
rejecting patches that are beyond the scope of this project’s roadmap). Still,
more research is needed to reproduce our method in a larger set of projects,
and in order to better understand how/whether social coding environments
influenced the decision to go open source.

Practitioners. Companies can benefit from our results, which evidence di-
verse aspects of eight open-sourcing proprietary projects. Our results yield
arguments that can support managers’ decision-making regarding a possible
migration of their products to open source, and help to create expectations
and action plans. By opening source code, a company can improve its vis-
ibility and attract interested developers, as was evidenced by the recurrent
“newcomers wave.” Companies may leverage this wave, for example, to re-
cruit new employees and establish a direct communication channel with the
community. In addition, since the results showed that, for some projects, the
amount of contributions and contributors increased after migration, company
managers can start thinking about policies for creating a sustainable com-
munity by maintaining the flow of new contributors and retaining existing
contributors.

6 Limitations and Threats to Validity

In a study such as this, there are always limitations and threats to validity.
One might argue that we analyzed a small number of projects, which limits the
generalization of our results. Nevertheless, our selected projects are diverse [32]
in terms of domain, age, number of contributions, and contributors (refer to
Section 3.2 for details). Our strategy was to focus on well-known proprietary
projects that recently open-sourced their code at GitHub. We acknowledge
that it is likely that these projects received more attention from external con-
tributors than less popular projects. Therefore, our findings cannot be directly
generalized to other projects (popular or not), either hosted on GitHub or
other forges. Furthermore, we selected our projects by searching blog posts,
newsletters, and README files; the first author manually conducted this pro-
cess. Due to the qualitative nature of this approach (and the timeliness of a
proprietary project becoming open source), one could find other projects. Still,

24 Gustavo Pinto et al.

although we consider our projects diverse, we certainly did not discover all
possible characteristics related to open-sourcing proprietary software projects.
More replication is necessary to fully understand the phenomenon. To facilitate
replication, we made available the scripts used to analyze data at the compan-
ion website: https://github.com/gustavopinto/migration-to-oss.

We also acknowledge that we could only conduct the manual analysis re-
garding patch acceptance (Section 4.2) in two projects (atom and hubot), since
the other ones did not employ the site admin flag, which we used to differ-
entiate project participants. Still, one might argue that this approach might
hidden false negatives, that is, a contributor is internal yet the person does
not have site admin enabled. To better understand the presence of false nega-
tives, we manually analyzed the top 20 external contributor profiles from each
of these two projects. We extended the analysis to manually investigating the
personal home pages (when available) and LinkedIn profiles (when matching
their GitHub profile). From the 40 developers, we could find only one that had
a previous affiliation with GitHub, which could be someone who was internal
contributor but was classified as an external contributor.

In addition, one threat relates to how we compare contributors across dif-
ferent version control systems. For instance, SVN and CVS systems track
authorship attributes differently than Git. So, the number of contributors be-
fore the move might represent only those who had privileged commit access,
whereas with Git all commits are attributed to the original author. We mit-
igate this threat by comparing the total number of contributors to the ones
present on the GitHub webpage. Although this web page shows the total num-
ber of contributors, it only lists the top 100 most active ones. Therefore, we
cannot compare all source code contributors of each project. Using GitHub
as our ground truth, we manually compared the total number of contributors
that we found with the ones that GitHub reports. We found that our study
reports between 7% to 10% additional contributors — the ones that we were
unable to disambiguate; however, we believe that this margin of error is not
sufficient to skew the main results of our study — most of whom appear after
the migration to GitHub. Yet, none of our respondents mentioned that our
snapshot differs from what they expected.

We downloaded the data of the selected project in the beginning of 2016.
However, since we chose active projects, it is likely that the number of con-
tributors kept increasing, thereby augmenting the difference from the numbers
presented in this study.

Moreover, in this study, we used GitHub’s issues to send out our ques-
tionnaires. Such public participation can also be a threat, since anyone could
answer our questions. To mitigate this threat, we verified whether the respon-
dents were in fact active project members. We observed that respondents for
projects plotly.js, zulip, and hubot were indeed the most active. For the re-
maining projects, the respondents varied from the 15th most active (hhvm)
to the 27th most active (roslyn). Also, we observed that some open source
projects do not use issues for discussions. For these cases, our issues were
closed almost right after their creation. We therefore got in touch through the

https://github.com/gustavopinto/migration-to-oss

On The Challenges of Open-Sourcing Proprietary Software Projects 25

official mailing list. Still, although our survey received comments from differ-
ent project members, some of the responses were (1) short or (2) incomplete.
Therefore, we were unable to answer questions such as “is the main motivation
of the companies to attract contributors” or “is the main motivation perhaps
to promote a profile of open source-friendliness and achieve goodwill from the
community?” We plan to conduct interviews in a future work to answer such
in-depth questions.

Lastly, one could argue that this study does not provide a novel contri-
bution; e.g., “of course a project will get more contributors / pull requests
/ bugs / contributions after going public”. However, such common-sense as-
sumptions are often in fact not backed up by scientific evidence. This paper
provides such evidence and, more significantly, quantifies the phenomenon:
even though some perceptions are confirmed (e.g., “not all users that fork
a project actually contribute to it”), others are challenged (e.g., “the rise of
contributions is not straightforward”).

7 Conclusion

In this paper, we studied the shift from proprietary, closed source software
to open source software in terms of collaboration and popularity metrics. In-
vestigating a curated set 8 of well-known, formerly proprietary projects, we
observed that some projects indeed experienced a growth of contributions and
contributors after becoming open source, even though this growth does not
last long. One of the reasons is what we call the “newcomers wave:” a high
number of contributors who effectively place a contribution right after the
project becomes open source, but abandon the project a few commits later.
Some of the challenges that projects may face include: it is hard to retain new
contributors; maintainers might expect a high volume of work after going open
source; and many forks do not translate into actual contributions. For future
work, we plan to conduct interviews with project members to gather additional
insights about the motivation behind the transitioning to open source.

References

1. Abbott, T.: Open sourcing zulip a dropbox hack week project.
Online (2017). URL https://blogs.dropbox.com/tech/2015/09/

open-sourcing-zulip-a-dropbox-hack-week-project/. Accessed: Nov-20-2017
2. Anthes, G.: Open source software no longer optional. Commun. ACM 59(8), 15–17

(2016)
3. Avelino, G., Passos, L.T., Hora, A.C., Valente, M.T.: A novel approach for estimating

truck factors. In: 24th IEEE International Conference on Program Comprehension,
ICPC 2016, Austin, TX, USA, May 16-17, 2016, pp. 1–10 (2016)

4. Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining email social
networks. In: Proceedings of the 2006 International Workshop on Mining Software
Repositories, MSR ’06, pp. 137–143 (2006)

5. Borges, H., Hora, A., Valente, M.T.: Understanding the factors that impact the pop-
ularity of GitHub repositories. In: 32nd IEEE International Conference on Software
Maintenance and Evolution (ICSME) (2016)

https://blogs.dropbox.com/tech/2015/09/open-sourcing-zulip-a-dropbox-hack-week-project/
https://blogs.dropbox.com/tech/2015/09/open-sourcing-zulip-a-dropbox-hack-week-project/

26 Gustavo Pinto et al.

6. Borges, H., Hora, A.C., Valente, M.T.: Predicting the popularity of GitHub repositories.
In: Proceedings of the The 12th International Conference on Predictive Models and Data
Analytics in Software Engineering, PROMISE 2016, Ciudad Real, Spain, September 9,
2016, pp. 9:1–9:10 (2016)

7. CSharpFAQ: We’re moving to GitHub! Online (2017). URL https://blogs.msdn.

microsoft.com/csharpfaq/2015/01/10/were-moving-to-github/. Accessed: Nov-20-
2017

8. Dabbish, L., Stuart, C., Tsay, J., Herbsleb, J.: Social coding in GitHub: Transparency
and collaboration in an open software repository. In: Proceedings of the ACM 2012 Con-
ference on Computer Supported Cooperative Work, CSCW ’12, pp. 1277–1286 (2012)

9. Dias, L.F., Steinmacher, I., Pinto, G., da Costa, D.A., Gerosa, M.: How does the shift to
GitHub impact project collaboration? In: IEEE International Conference on Software
Maintenance and Evolution, ICSME 2016, Raleigh, EUA (2016)

10. Donohoe, C.: Say hello to hubot. Online (2017). URL https://github.com/blog/

968-say-hello-to-hubot/. Accessed: Nov-20-2017
11. Evans, J.: The hiphop virtual machine. Online (2017). URL https://www.facebook.

com/note.php?note_id=10150415177928920&hn=2. Accessed: Nov-20-2017
12. Fogel, K.: Producing Open Source Software: How to Run a Successful Free Software

Project, first edn. O’Reilly Media (2013)
13. GitHub: GitHub help — about stars. Online (2017). URL https://help.github.com/

articles/about-stars/. Accessed: May-4-2017
14. Gousios, G., Pinzger, M., Deursen, A.v.: An exploratory study of the pull-based software

development model. In: Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pp. 345–355 (2014)

15. Hars, A., Ou, S.: Working for free? motivations for participating in open-source projects.
Int. J. Electron. Commerce 6(3), 25–39 (2002)

16. Hertel, G., Niedner, S., Herrmann, S.: Motivation of software developers in open source
projects: an internet-based survey of contributors to the linux kernel. Research Policy
32(7), 1159–1177 (2003)

17. Hopkins, W.G.: A New View of Statistics. Sport Science (2004)
18. Jensen, C., King, S., Kuechler, V.: Joining free/open source software communities: An

analysis of newbies’ first interactions on project mailing lists. In: Proceedings of the
44th Hawaii International Conference on System Sciences, HICSS ’10, pp. 1–10. IEEE
(2011)

19. Jergensen, C., Sarma, A., Wagstrom, P.: The onion patch: Migration in open source
ecosystems. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ESEC/FSE ’11, pp. 70–
80 (2011)

20. Jergensen, N.: Developer autonomy in the freebsd open source project. Journal of
Management and Governance 11(2), 119–128 (2007)

21. Jiang, J., Lo, D., He, J., Xia, X., Kochhar, P.S., Zhang, L.: Why and how developers
fork what from whom in GitHub. Empirical Softw. Engg. 22(1), 547–578 (2017)

22. Kalliamvakou, E., Damian, D., Blincoe, K., Singer, L., German, D.M.: Open source-
style collaborative development practices in commercial projects using GitHub. In:
Proceedings of the 37th International Conference on Software Engineering - Volume 1,
ICSE ’15, pp. 574–585 (2015)

23. Kastrenakes, J.: Apple’s new programming language swift is now open
source. Online (2017). URL https://www.theverge.com/2015/12/3/9842854/

apple-swift-open-source-released. Accessed: Nov-20-2017
24. Ke, W., Zhang, P.: The effects of extrinsic motivations and satisfaction in open source

software development. Journal of the Association for Information Systems 11(12), 784–
808 (2010)

25. Kitchenham, B., Pfleeger, S.: Personal opinion surveys. In: F. Shull, J. Singer, D. Sjberg
(eds.) Guide to Advanced Empirical Software Engineering, pp. 63–92. Springer London
(2008)

26. Kraut, R.E., Burke, M., Riedl, J., Resnick, P.: Building Successful Online Communities:
Evidence-Based Social Design, chap. The Challenges of Dealing with Newcomers, pp.
179–230. MIT Press (2012). URL http://www.worldcat.org/isbn/0262016575

https://blogs.msdn.microsoft.com/csharpfaq/2015/01/10/were-moving-to-github/
https://blogs.msdn.microsoft.com/csharpfaq/2015/01/10/were-moving-to-github/
https://github.com/blog/968-say-hello-to-hubot/
https://github.com/blog/968-say-hello-to-hubot/
https://www.facebook.com/note.php?note_id=10150415177928920&hn=2
https://www.facebook.com/note.php?note_id=10150415177928920&hn=2
https://help.github.com/articles/about-stars/
https://help.github.com/articles/about-stars/
https://www.theverge.com/2015/12/3/9842854/apple-swift-open-source-released
https://www.theverge.com/2015/12/3/9842854/apple-swift-open-source-released
http://www.worldcat.org/isbn/0262016575

On The Challenges of Open-Sourcing Proprietary Software Projects 27

27. Landwerth, I.: A journey through open source: The trials
& triumphs in roslyn’s first year of open source. Online
(2017). URL https://blogs.msdn.microsoft.com/dotnet/2015/04/06/

a-journey-through-open-source-the-trials-triumphs-in-roslyns-first-year-of-open-source/.
Accessed: Jun-4-2017

28. Marlow, J., Dabbish, L., Herbsleb, J.: Impression formation in online peer production:
Activity traces and personal profiles in GitHub. In: Proceedings of the 2013 Conference
on Computer Supported Cooperative Work, CSCW ’13 (2013)

29. Marz, N.: History of apache storm and lessons learned. Online (2017). URL http:

//nathanmarz.com/blog/history-of-apache-storm-and-lessons-learned.html. Ac-
cessed: Nov-20-2017

30. McDonald, N., Goggins, S.: Performance and participation in open source software on
GitHub. In: CHI ’13 Extended Abstracts on Human Factors in Computing Systems,
CHI EA ’13, pp. 139–144 (2013)

31. Meneely, A., Williams, L.: Secure open source collaboration: An empirical study of linus’
law. In: Proceedings of the 16th ACM Conference on Computer and Communications
Security, CCS ’09, pp. 453–462 (2009)

32. Nagappan, M., Zimmermann, T., Bird, C.: Diversity in software engineering research.
In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pp. 466–476 (2013)

33. Oreg, S., Nov, O.: Exploring motivations for contributing to open source initiatives:
The roles of contribution context and personal values. Computers in Human Behavior
24(5), 2055–2073 (2008)

34. Padhye, R., Mani, S., Sinha, V.S.: A study of external community contribution to open-
source projects on GitHub. In: Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, pp. 332–335 (2014)

35. Pham, R., Singer, L., Liskin, O., Figueira Filho, F., Schneider, K.: Creating a shared
understanding of testing culture on a social coding site. In: Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13, pp. 112–121 (2013)

36. Pham, R., Singer, L., Schneider, K.: Building test suites in social coding sites by leverag-
ing drive-by commits. In: Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, pp. 1209–1212 (2013)

37. Pinto, G., Steinmacher, I., Gerosa, M.A.: More common than you think: An in-depth
study of casual contributors. In: IEEE 23rd International Conference on Software Anal-
ysis, Evolution, and Reengineering, SANER 2016, Suita, Osaka, Japan, March 14-18,
2016 - Volume 1, pp. 112–123 (2016)

38. plotly.js: Plotly.js open-source announcement in plotly.js. Online (2017). URL https:

//plot.ly/javascript/open-source-announcement/. Accessed: Nov-20-2017
39. Ray, B., Posnett, D., Filkov, V., Devanbu, P.: A large scale study of programming

languages and code quality in GitHub. In: Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2014, pp. 155–
165 (2014)

40. Raymond, E.S.: The Cathedral and the Bazaar: Musings on Linux and Open Source by
an Accidental Revolutionary. O’Reilly & Associates, Inc., Sebastopol, CA, USA (2001)

41. Rebouças, M., Pinto, G., Ebert, F., Torres, W., Serebrenik, A., Castor, F.: An empirical
study on the usage of the swift programming language. In: IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering, SANER 2016, Suita,
Osaka, Japan, March 14-18, 2016 - Volume 1, pp. 634–638 (2016)

42. Rebouças, M., Santos, R.O., Pinto, G., Castor, F.: How does contributors’ involvement
influence the build status of an open-source software project? In: Proceedings of the
14th International Conference on Mining Software Repositories, MSR ’17, pp. 475–478
(2017)

43. Sobo, N.: Atom is now open source. Online (2017). URL http://blog.atom.io/2014/

05/06/atom-is-now-open-source.html/. Accessed: Nov-20-2017
44. Steinmacher, I., Conte, T., Gerosa, M.A., Redmiles, D.F.: Social barriers faced by new-

comers placing their first contribution in open source software projects. In: Proceedings
of the 18th ACM Conference on Computer Supported Cooperative Work & Social Com-
puting, CSCW ’15, pp. 1–13. ACM, New York, NY, USA (2015)

https://blogs.msdn.microsoft.com/dotnet/2015/04/06/a-journey-through-open-source-the-trials-triumphs-in-roslyns-first-year-of-open-source/
https://blogs.msdn.microsoft.com/dotnet/2015/04/06/a-journey-through-open-source-the-trials-triumphs-in-roslyns-first-year-of-open-source/
http://nathanmarz.com/blog/history-of-apache-storm-and-lessons-learned.html
http://nathanmarz.com/blog/history-of-apache-storm-and-lessons-learned.html
https://plot.ly/javascript/open-source-announcement/
https://plot.ly/javascript/open-source-announcement/
http://blog.atom.io/2014/05/06/atom-is-now-open-source.html/
http://blog.atom.io/2014/05/06/atom-is-now-open-source.html/

28 Gustavo Pinto et al.

45. Steinmacher, I., Silva, M.A.G., Gerosa, M.A., Redmiles, D.F.: A systematic litera-
ture review on the barriers faced by newcomers to open source software projects.
Information and Software Technology 59, 67–85 (2015). DOI http://dx.doi.org/
10.1016/j.infsof.2014.11.001. URL http://www.sciencedirect.com/science/article/

pii/S0950584914002390

46. Steinmacher, I., Wiese, I.S., Chaves, A.P., Gerosa, M.A.: Why do newcomers abandon
open source software projects? In: Proceedings of the 2013 6th International Workshop
on Cooperative and Human Aspects of Software Engineering, CHASE ’13, pp. 25–32.
IEEE (2013)

47. Steinmacher, I., Wiese, I.S., Conte, T., Gerosa, M.A., Redmiles, D.: The hard life of
open source software project newcomers. In: Proceedings of the International Workshop
on Cooperative and Human Aspects of Software Engineering, CHASE ’14, pp. 72–78.
ACM (2014)

48. Strauss, A., Corbin, J.M.: Basics of Qualitative Research : Techniques and Procedures
for Developing Grounded Theory, 3rd edn. SAGE Publications (2007)

49. Torres, M.R.M., Toral, S.L., Perales, M., Barrero, F.: Analysis of the core team role in
open source communities. In: 2011 International Conference on Complex, Intelligent,
and Software Intensive Systems, pp. 109–114 (2011)

50. Tourani, P., Adams, B., Serebrenik, A.: Code of conduct in open source projects. In: 2017
IEEE 24th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 24–33 (2017)

51. Tsay, J., Dabbish, L., Herbsleb, J.: Influence of social and technical factors for evalu-
ating contribution in GitHub. In: Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pp. 356–366 (2014)

52. Vasilescu, B., Filkov, V., Serebrenik, A.: Perceptions of diversity on GitHub: A user
survey. In: Proceedings of the Eighth International Workshop on Cooperative and
Human Aspects of Software Engineering, CHASE ’15, pp. 50–56 (2015)

53. Wang, J., Sarma, A.: Which bug should i fix: helping new developers onboard a new
project. In: Proceedings of the 4th International Workshop on Cooperative and Human
Aspects of Software Engineering, CHASE ’11 (2011)

http://www.sciencedirect.com/science/article/pii/S0950584914002390
http://www.sciencedirect.com/science/article/pii/S0950584914002390

	Introduction
	Related Work
	Research Method
	Results
	Additional Discussion
	Limitations and Threats to Validity
	Conclusion

