
Inadequate Testing, Time Pressure, and (Over)
Confidence: A Tale of Continuous Integration Users

Gustavo Pinto
Federal Institute of Pará

Belém, PA, Brazil
gustavo.pinto@ifpa.edu.br

Marcel Rebouças
Federal University of Pernambuco

Recife, PE, Brazil
mscr@cin.ufpe.br

Fernando Castor
Federal University of Pernambuco

Recife, PE, Brazil
castor@cin.ufpe.br

Abstract—Continuous Integration (CI) prescribes that changes
should be integrated into the main codebase as often as possible
and that the system should be built frequently. To support CI, a
number of software tools have been developed. However, little is
known about the main reasons for build breakage and whether
CI delivers its promise of early problem detection and smooth
integration. To shed light on this issue, we conducted a survey
with 158 CI users. Through a qualitative investigation we found
that inadequate testing is the most common technical reason
related to build breakage, whereas lack of time plays a role on
the social reasons. Still, although some respondents reported that
CI usage increases the confidence that the code is in a known
state, some respondents also reported that there is a false sense
of confidence when blindly trusting tests.

Keywords-Continuous Integration; Build Breakage; Survey;

I. INTRODUCTION

Continuous Integration (CI) is a core agile practice [1]. It
is aimed at integrating code that is under development with
the mainline codebase in a shared repository at least daily,
leading to multiple integrations per day [2]. Each integration is
properly verified by an automated build. Arguably, in a project
that uses CI, errors can be detected quickly, their causes can be
located with less effort, and the overall development process
can be sped up. As a result, there is an increasing adoption of
continuous integration by software development teams.

In spite of the increasing adoption, the large set of tools, and
the well-known benefits, little is known about how software
developers are dealing with the usage of continuous integration
techniques. According to the literature [3], more research is
needed to better understand the dynamics, process, benefits,
and implications of CI usage. Starting from this premise, this
paper presents an empirical study aimed at illuminating the
the reasons for build breakage, and the benefits/problems of
CI usage. Specifically, the question we are trying to answer
is:

RQ. What are the perceptions from CI users in terms of
reasons for build breakage, and the benefits and problems
of CI usage?

To provide answers to this question, we conducted an online
survey with 158 CI users. Through quantitative and qualitative
analyzes of these answers, our study produced a set of findings,

many of which were unexpected. We discuss them in detail in
Sections III—IV.

II. SURVEY DESCRIPTION

In order to investigate the perception of CI usage, we
conducted an online survey. Our target population are software
developers that have broken at least one build in a non-trivial
open-source software.

A. Subjects

To select our subjects, we start looking at the most popular
programming languages on Github, measured by the total
number of files created in each language. Using this criteria,
the chosen programming languages were: C, C++, C#, Clojure,
CoffeeScript, Erlang, Go, Haskell, Java, JavaScript, Objective-
C, Perl, PHP, Python, Ruby, Scala, and TypeScript. However,
we removed CoffeScript and TypeScript since Travis did not
offer support to these programming languages.

For each one of the remaining languages, we then selected
the 50 most popular projects, measured by the number of stars,
which is an explicit way for Github users to manifest their
satisfaction with a project [4]. We also restricted our search
to projects that have a .travis.yml file. This file stores
all configuration required to run Travis’ service. We ended
up with an initial list of 750 travis-configured projects. When
manually analyzing these projects, we observed that some of
them do not properly fit for the purpose of this study, because:

• Some projects are not software projects. We found
that several popular open-source projects are not software
projects. Instead, these projects are used to share book-
marks1, textbooks2, and were mirrors of other reposito-
ries3. We excluded these projects.

• Some projects are not active. We found 30 projects that
are not active. We believe it is important to focus on active
projects only because we wanted to measure ongoing
development. Therefore, we selected projects that have
at least one commit and at least 2 committers in the last
12 months. We excluded these projects.

1https://github.com/vinta/awesome-python
2https://github.com/SamyPesse/

How-to-Make-a-Computer-Operating-System
3http://www.github.com/WordPress/WordPress

https://github.com/vinta/awesome-python
https://github.com/SamyPesse/How-to-Make-a-Computer-Operating- System
https://github.com/SamyPesse/How-to-Make-a-Computer-Operating- System
http://www.github.com/WordPress/WordPress


After this manual process, we ended up with a list of 682
projects. For each one, we queried the Travis API4 in order
to retrieve builds’ metadata. However, the Travis API did
not answer 16 of our requests. Unfortunately, some of these
requests are for projects such as Angular.js and Rails,
which are highly active and have a long history of software
builds. This fact reduced our final sample to 666 projects.

Overall, these projects performed about 737,000 builds,
which 182,072 have failed. Our subjects constitute a random
sample of 1,100 software developers, with valid email ad-
dresses, that have broken at least one build. We chose to focus
on developers with broken builds because they might provide
a fix for the build and, therefore, have a richer experience with
CI than developers that have never faced such problems. We
contacted participants individually by email, inviting them to
participate in the survey.

B. Design

The survey used in this work was based on the
recommendations of Kitchenham et al. [5], following
the phases prescribed by the authors: planning, creating
the survey, defining the target audience, evaluating,
conducting the survey, and analyzing the results. We
also employed a number of principles used to increase
survey participation [6], such as sending personalized
invitations, allowing the participant to be completely
anonymous, and asking closed and direct questions. We
set up the survey as an on-line questionnaire (it can
be found at: https://docs.google.com/forms/d/
1qqSkJ4gOqTSiSsvGGO5M1A-0cQOrYqUodcU1IXtw_
Qo/prefill). Before sending the link to our subjects, we
created a first draft of the survey and informally presented
it to a number of colleagues. Based on their remarks, we
refined some of the questions and explanations, mainly to
make them more precise. Along with the instructions of the
survey, we included some examples as an attempt to clarify
our intent. Participation was voluntary and the estimated time
to complete the survey was 10-15 minutes. Over a period of
30 days, we obtained 158 responses, resulting in 14.4% of
response rate.

C. Questions

Our initial survey consisted of 15 questions, 7 of which
were open. The survey was divided in five sections: (1)
technical background of the participants, (2) experience with
CI techniques, (3) CI fundamentals, (4) reasons for build
breakage, and (5) benefits and problems of CI usage. In this
paper, we report on sections 4 and 5.
(4) Reasons for build breakage. Here we asked what are the
technical reasons (Q12) and social reasons (Q13) that might
have influenced the build breakage.
(5) Benefits and Problems of CI usage. Finally, we asked
their opinion about the benefits (Q14) and problems (Q15)
related to the use of continuous integration techniques.

4http://api.travis-ci.org

III. REASONS FOR BUILD BREAKAGE

A. Technical Reasons for Build Breakage

We found several technical reasons that might explain build
breakage. Among the most common ones, there is inadequate
testing (33 occurrences). Respondents mentioned that some
tests are “Badly written that fail with minor bugfixes” or even
“not enough tests”. However, one respondent mentioned that
they might be tempted to skip tests execution, since “running
a test suite may be too slow and skipped”. These respondents
use CI as a way to speed up the development process, while
still relying on the test suite.

Moreover, some respondents claimed that version changes
might play a role (12 occurrences). For instance, “[the] version
of a language component is different, and the change made to
the language cause breakage”. Another drawback reported is
related to dependency management (8 occurrences). As one
example, one respondent mentioned that “people sometimes
don’t update dependencies, so the CI server detects errors that
do not happen locally”. It is important to note that dependency
management and version changes are two key activities of
build systems. Therefore, developers that may face technical
problems with the usage of build systems, may also face them
with CI systems.

Still, we noticed that some developers are facing barriers
with the intricacy of the code base (14 occurrences) and
lack of domain knowledge (18 occurrences). These developers
claimed “unfamiliarity with the architecture of the code and
overall module interactions”, which might be due to a “lack
of experience with the project”. This is particularly relevant
for open-source projects, since newcomers often do not know
how the project is organized or how to start contributing [7]. In
addition, the social facilities brought by social coding websites
such as Github and Bitbucket lowered the barriers for one
placing a contribution to an open-source project. Therefore,
casual contributors that happen to enjoy one particular open-
source project might be tempted to contribute [8]. However,
without proper guidance or documentation, such contributors
might not be aware of the workflow (e.g., “I didn’t know about
the linter (or that CI was being used) until after I submitted my
patch.”)5. As opposed to the intricacy of the code base, some
developers missed edge cases (5 occurrences), such as “syntax
errors, formatting errors if using a linter”, which, according
to one respondent, are due to an “underestimation of impact
of small changes”.

Finally, other not so common technical reasons include:
git usage (4 occurrences), flaky tests (3 occurrences), and
timezones (2 occurrences). Ultimately, five developers either
perceived no technical reason related to build breakage or
cannot recall.

B. Social Reasons for Build Breakage

When analyzing the answers, we found that the most
common social reason associated with build breakage is time

5Linters are tools for verifying code style guidelines.

https://docs.google.com/forms/d/1qqSkJ4gOqTSiSsvGGO5M1A-0cQOrYqUodcU1IXtw_Qo/prefill
https://docs.google.com/forms/d/1qqSkJ4gOqTSiSsvGGO5M1A-0cQOrYqUodcU1IXtw_Qo/prefill
https://docs.google.com/forms/d/1qqSkJ4gOqTSiSsvGGO5M1A-0cQOrYqUodcU1IXtw_Qo/prefill
http://api.travis-ci.org


pressure (36 occurrences). One particular respondent men-
tioned that he self-imposed this time pressure, because of an
“eagerness to help”, as he mentioned: “I’ll just make that
change right now!”.

Another social reason is the lack of testing culture, as evi-
denced by 17 respondents. In this particular finding, although
the majority of the respondents acknowledged that this is due
to “people not running the tests and build on their machines
before pushing the changes”, we also found cases of “poor
testing and reviewing of the commit beyond the ‘immediate
problem’ the developer is attempting to rectify”. Similarly, we
found 8 respondents that believe that build breakage can be
caused by carelessness on the part of developers (e.g., “just be
happy I’m commiting to the project, somebody else can test
if what I did works”). Confluent with carelessness, there is
overconfidence on the part of 11 respondents. Before breaking
the build, they thought that “the change is alright”, “this is
such a trivial change”, or “this is only a small fix, it should
not break anything”.

Still, we found six respondents that claimed that the lack
of communication hindered the solution of a task, leading to
the build breakage. Indeed, most of the respondents mentioned
lack of communication skills (e.g., “disincentive to ask folks
for help” or “not knowing who to ask for help”). Yet, two
respondents believe in moving fast and breaking things, as
one of them clarified “I’ll merge a commit that isn’t quite ready
as a clear signal of intent to move in that direction.” and seven
respondents are convinced that it is fine to break the build,
as one respondent exemplified: “CI is there for you not to be
afraid for broken builds in a branch”. Notwithstanding, one
respondent warned that it is fine “as long as it’s not merged
into trunk/master until it’s green”. Finally, five respondents
mentioned that they are not aware of any social reason.

IV. BENEFITS AND PROBLEMS OF CI USAGE

A. The Benefits of CI Usage

As for the benefits, we found a variety of reasons. The
most common benefit is to catch problems as early as
possible, reported by 32 respondents. It is important to note
that problems can be described in terms of new bugs and
regressions. One respondent summarized this benefit as “Being
aware of when/where breakage occurs greatly accelerates
solution”. Moreover, automation was perceived as one of the
main benefits, as pointed out by 19 respondents. Automation,
however, is not only related to automated testing, as one
respondent highlighted, but can be described in terms of “au-
tomated code quality enforcement, automated release cycles,
automated deployment”. Generally speaking, automation is
aimed at “performing a wide range of manual steps that a
human would not normally be bothered to check”.

Another benefit is related to improving software quality, as
described by 18 respondents. Although most of the respon-
dents have mentioned “software quality” with no additional
details, some respondents have mentioned other quality at-
tributes such as (1) increased stability, (2) quality of code and
test, and (3) quality of documentation. One of the anonymous

respondents has detailed how CI can improve software quality:
“When you use CI, you have a good health check in your
code base, and from time to time you can keep looking if
any other dependencies didn’t break your package. It is a
warrant of quality of your code”. Another interesting benefit
is the fast development cycle. According to one respondent,
this happens because “[its] extremely fast development cycle
[made it] easy to try out stuff & easy to add new testing (you
don’t need to coordinate with other people as much, which is
time-expensive)”.

Furthermore, we found that 16 respondents mentioned
cross-platform testing as an effective method for “compiling
for multiple different targets (x86,arm,window,linux etc)”. An-
other respondent complemented that “cross-platform testing
acts as a sort of documentation”, and “[it can be configured]
with moderate ease and in a fraction of the time”. Some
respondents also mentioned that “this [task] is not feasible or
cost-effective to do manually”. Still, 10 respondents mentioned
that continuous integration gives more confidence to perform
required code changes, as one respondent described: “Depends
on the coverage, but some sort of confidence that introduced
changes don’t break the current behavior”. The same respon-
dent went further and complemented that “I assume the most
critical parts of the system have been covered by test cases”.
It is important to note that test cases can only ensure that
known bugs stay fixed. As Dijkstra claimed in the 1970s [9],
and extensively evaluated in the following decades (e.g., [10]),
“program testing can be used to show the presence of bugs,
but never their absence” [9].

B. The Problems of CI Usage

As regarding the hidden problems associated with continu-
ous integration usage, we found that 31 respondents are having
a hard time configuring the build environment. Although
some respondents agreed that the burden placed by the config-
uration process is often doable (e.g., “Some extra overhead and
complexity for setting them up / maintaining the configuration.
Not usually a big problem”), we found cases of which the
configuration process is far from trivial (e.g., “I found it hard
to setup some distributed/multicomponent tests. This partially
can be resolved by the containers.”). It is important to observe
that, according to a recent study [3], a significant proportion of
open-source projects that use CI perform 5 or less changes to
their CI configurations. Also, many changes were due to the
version changes of dependencies. Therefore, this additional
overhead might not place a constant burden on the software
development team. Overcoming such technical problems is
particularly challenging for onboarding newcomers (9 occur-
rences) since they “do not understand what CI does and what
it doesn’t”.

Another recurring problem is the false sense of confidence
(25 occurrences). As opposed to the confidence benefit, re-
spondents described the false sense of confidence as a situa-
tion of which developers blindly trust in tests. One respondent
synthesized this problem as:



“Over-reliance on a passing build result can encour-
age a reviewer to merge code without a thorough
review. The continuous integration pass is only as
meaningful as the test coverage.”

This over-reliance on software testing, in general, and
unit testing, in particular, as a measure of quality has been
thoroughly discussed in the software testing literature [11]. For
instance, tests can be insufficient, have poor quality, or even
incorrect. Furthermore, some respondents have associated this
false sense of confidence to insufficient testing (e.g., “If test
coverage is not sufficient, passing all the time doesn’t mean
much”). However, high coverage percentages alone cannot
ensure code quality, since intermittent, non-deterministics or
unknown bugs may not be detected by the periodic mainte-
nance tests [12]. In fact, there is a complex relation between
test-coverage and defect-coverage [11].

Moreover, we observed that the use of continuous integra-
tion techniques require developers a certain level of discipline
(12 occurrences), as one respondent mentioned “it takes a
lot of self-organization to work under pressure of ‘master
must build’”. In addition, one respondent claimed that such
discipline might introduce a lack of focus, since “instead of
only focusing on the code of your application, you also focus
on the code of your build system. Basically, a software engi-
neer becomes an infrastructure engineer, which is much less
interesting”. Likewise, additional effort was also evidenced
by 3 other respondents (e.g., “Need more people sharing /
Documenting and helping resolve problems / Making sure
builds pass”).

Interestingly, one respondent drew attention to the fact that
the benefit multiple environments can also be a problem, for
instance “If build fails it may be hard to debug it, especially
if the problem doesn’t occur in the local environment”. Addi-
tional problems that were highlighted in our research are the
monetary costs (e.g., “Hosted services like travis are not free if
you want to use them at bigger scale or you need to maintain
by yourself ”) and flaky tests (e.g., “Tests can sometimes be
flaky, which is frustrating”). Finally, 10 respondents mentioned
that they have never experienced any problems with CI.

V. RELATED WORK

Vasilescu et al. [13] found although that 92% of the selected
projects have configured to use Travis-CI, 45% of them have
no associated builds recorded in the Travis database. They
also found that direct contributions (pushed commits) are more
frequent than pull-requests. In a follow up study, Vasilescu
et al. [14] found that CI helped to increase the number of
accepted pull requests from core developers, and to reduce
the quantity of rejected from non-core developers, without
affecting code quality. While CI can help a reviewer to make
decisions regarding pull-requests faster, our study provide
evidence that it is important not to over-rely on its results.
To the best of our knowledge, the work of Hilton et al. [3] is
the closest work to ours. By analyzing builds and performing a
survey, the authors collected evidence showing that CI reduces
the time between releases and that it is widely adopted in

popular projects. However, the authors do not go deeper, for
instance, in analyzing the perceptions about the problems and
challenges of using this development practice.

VI. CONCLUSIONS

Continuous integration is gaining increasingly adoption
among software developers. However, few is known about
the perception of these users about the fundamental concepts
related to CI systems and their usage, the reasons for build
breakage, and the benefits and problems associated to it. In
this study we performed an user survey with 158 CI users
to shed the light on these questions. Through a qualitative
research analysis, we produce a list of findings about the CI
usage, some which are not always obvious, such as the (over)
confidence in CI systems, a lack of testing culture, and the
self-imposed time pressure.

Acknowledgements. We would like to thank the anony-
mous reviewers for helping to improve this paper. This re-
search was partially funded by CNPq (304755/2014-1 and
406308/2016- 0), FACEPE (APQ-0839-1.03/14), FACEPE
PRONEX (APQ 0388-1.03/14), and PROPPG/IFPA.

REFERENCES

[1] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change (2Nd Edition). Addison-Wesley Professional, 2004.

[2] P. Duvall, S. Matyas, and A. Glover, Continuous Integration: Improving
Software Quality and Reducing Risk, ser. A Martin Fowler signature
book. Addison-Wesley, 2007.

[3] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage, costs,
and benefits of continuous integration in open-source projects,” in ASE,
2016, pp. 426–437.

[4] H. Borges, A. Hora, and M. T. Valente, “Understanding the factors that
impact the popularity of GitHub repositories,” in ICSME, 2016.

[5] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. E. Emam, and J. Rosenberg, “Preliminary guidelines for
empirical research in software engineering,” IEEE Trans. Softw. Eng.,
vol. 28, no. 8, pp. 721–734, Aug. 2002.

[6] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and T. Zimmermann,
“Improving developer participation rates in surveys,” in CHASE, May
2013, pp. 89–92.

[7] I. Steinmacher, I. S. Wiese, T. Conte, M. A. Gerosa, and D. F. Redmiles,
“The hard life of open source software project newcomers,” in CHASE,
2014, pp. 72–78.

[8] G. Pinto, I. Steinmacher, and M. A. Gerosa, “More common than you
think: An in-depth study of casual contributors,” in SANER, 2016, pp.
112–123.

[9] E. W. Dijkstra, “Structured programming,” O. J. Dahl, E. W. Dijkstra,
and C. A. R. Hoare, Eds., 1972, ch. Chapter I: Notes on Structured
Programming, pp. 1–82.

[10] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage
and adequacy,” ACM Comput. Surv., vol. 29, no. 4, pp. 366–427, Dec.
1997.

[11] L. Briand and D. Pfahl, “Using simulation for assessing the real impact
of test coverage on defect coverage,” in ISSRE, 1999, pp. 148–.

[12] M. Abramovici and P. S. Parikh, “WARNING: 100% fault coverage may
be misleading!!” in Proceedings International Test Conference 1992, Sep
1992, pp. 662–.

[13] B. Vasilescu, S. van Schuylenburg, J. Wulms, A. Serebrenik, and
M. G. J. van den Brand, “Continuous integration in a social-coding
world: Empirical evidence from github,” in ICSM, 2014, pp. 401–405.

[14] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in github,” in
ESEC/FSE 2015, pp. 805–816.


